These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16287304)

  • 1. Oxidative activation of n-butane on sulfated zirconia.
    Li X; Nagaoka K; Simon LJ; Olindo R; Lercher JA; Hofmann A; Sauer J
    J Am Chem Soc; 2005 Nov; 127(46):16159-66. PubMed ID: 16287304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation and isomerization of n-butane on sulfated zirconia model systems--an integrated study across the materials and pressure gaps.
    Breitkopf C; Papp H; Li X; Olindo R; Lercher JA; Lloyd R; Wrabetz S; Jentoft FC; Meinel K; Förster S; Schindler KM; Neddermeyer H; Widdra W; Hofmann A; Sauer J
    Phys Chem Chem Phys; 2007 Jul; 9(27):3600-18. PubMed ID: 17612725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Mn and Fe on the reactivity of sulfated zirconia toward H2 and n-butane: a diffuse reflectance IR spectroscopic investigation.
    Klose BS; Jentoft FC; Schlögl R; Subbotina IR; Kazansky VB
    Langmuir; 2005 Nov; 21(23):10564-72. PubMed ID: 16262321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ XANES study of Mn in promoted sulfated zirconia catalysts.
    Jentoft RE; Hahn AH; Jentoft FC; Ressler T
    Phys Chem Chem Phys; 2005 Jul; 7(14):2830-8. PubMed ID: 16189600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide radical anions on the surface of zirconia and sulfated zirconia: formation mechanisms, properties and structure.
    Bedilo AF; Plotnikov MA; Mezentseva NV; Volodin AM; Zhidomirov GM; Rybkin IM; Klabunde KJ
    Phys Chem Chem Phys; 2005 Aug; 7(16):3059-69. PubMed ID: 16186911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-free preparation of nanosized sulfated zirconia with Brønsted acidic sites from a simple calcination.
    Sun Y; Ma S; Du Y; Yuan L; Wang S; Yang J; Deng F; Xiao FS
    J Phys Chem B; 2005 Feb; 109(7):2567-72. PubMed ID: 16851258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfated nanozirconia: an investigation on acid-base properties and n-butane isomerization activity.
    Mishra HK; Dalai AK; Das DD; Parida KM; Pradhan NC
    J Colloid Interface Sci; 2004 Apr; 272(2):378-83. PubMed ID: 15028501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal chemistry of C4 hydrocarbons on Pt(111): Mechanism for double-bond isomerization.
    Lee I; Zaera F
    J Phys Chem B; 2005 Feb; 109(7):2745-53. PubMed ID: 16851283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane.
    Zhang J; Liu X; Blume R; Zhang A; Schlögl R; Su DS
    Science; 2008 Oct; 322(5898):73-7. PubMed ID: 18832641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of rhenium and ReOx species within ZSM5 channels and their catalytic function in the activation of alkanes and alkanols.
    Lacheen HS; Cordeiro PJ; Iglesia E
    Chemistry; 2007; 13(11):3048-57. PubMed ID: 17323392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly effective sulfated zirconia nanocatalysts grown out of colloidal silica at high temperature.
    Zhu G; Wang C; Zhang Y; Guo N; Zhao Y; Wang R; Qiu S; Wei Y; Baughman RH
    Chemistry; 2004 Oct; 10(19):4750-4. PubMed ID: 15372651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of SO3 with c-ZrO2(111) films on Pt(111).
    Meinel K; Hofmann A; Förster S; Kulla R; Schindler KM; Neddermeyer H; Sauer J; Widdra W
    Phys Chem Chem Phys; 2006 Apr; 8(13):1593-600. PubMed ID: 16633644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophilic Organoiridium(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization.
    Syed ZH; Kaphan DM; Perras FA; Pruski M; Ferrandon MS; Wegener EC; Celik G; Wen J; Liu C; Dogan F; Goldberg KI; Delferro M
    J Am Chem Soc; 2019 Apr; 141(15):6325-6337. PubMed ID: 30900885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective and stable iso-butene production over highly dispersed VO(x) species on SiO(2) supports via combining oxidative and non-oxidative iso-butane dehydrogenation.
    Ovsitser O; Kondratenko EV
    Chem Commun (Camb); 2010 Jul; 46(27):4974-6. PubMed ID: 20532372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of the surface structure, acidity, and catalytic performance of tungstated zirconia prepared from crystalline zirconia or amorphous zirconium oxyhydroxide.
    Lebarbier V; Clet G; Houalla M
    J Phys Chem B; 2006 Jul; 110(28):13905-11. PubMed ID: 16836340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative dehydrogenation of propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: structural characterization and catalytic function.
    Yang S; Iglesia E; Bell AT
    J Phys Chem B; 2005 May; 109(18):8987-9000. PubMed ID: 16852071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of the energetics for the oligomerization of gas phase HgO and HgS and for the solvolysis of crystalline HgO and HgS.
    Tossell JA
    J Phys Chem A; 2006 Feb; 110(7):2571-8. PubMed ID: 16480318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for Redox Mechanisms in Organometallic Chemisorption and Reactivity on Sulfated Metal Oxides.
    Klet RC; Kaphan DM; Liu C; Yang C; Kropf AJ; Perras FA; Pruski M; Hock AS; Delferro M
    J Am Chem Soc; 2018 May; 140(20):6308-6316. PubMed ID: 29629771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-Principles-Based Multiscale Modelling of Nonoxidative Butane Dehydrogenation on Cr
    Kopač D; Jurković DL; Likozar B; Huš M
    ACS Catal; 2020 Dec; 10(24):14732-14746. PubMed ID: 33362945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of H
    Lee HJ; Kang DC; Kim EJ; Suh YW; Kim DP; Han H; Min HK
    Nanomaterials (Basel); 2022 Sep; 12(17):. PubMed ID: 36080073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.