These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
733 related articles for article (PubMed ID: 16287872)
1. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Román E; Nombela C; Pla J Mol Cell Biol; 2005 Dec; 25(23):10611-27. PubMed ID: 16287872 [TBL] [Abstract][Full Text] [Related]
2. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. O'Rourke SM; Herskowitz I Mol Cell Biol; 2002 Jul; 22(13):4739-49. PubMed ID: 12052881 [TBL] [Abstract][Full Text] [Related]
3. Role of Sho1p adaptor in the pseudohyphal development, drugs sensitivity, osmotolerance and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae. Boisnard S; Ruprich-Robert G; Florent M; Da Silva B; Chapeland-Leclerc F; Papon N Yeast; 2008 Nov; 25(11):849-59. PubMed ID: 19061190 [TBL] [Abstract][Full Text] [Related]
4. Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans. Román E; Cottier F; Ernst JF; Pla J Eukaryot Cell; 2009 Aug; 8(8):1235-49. PubMed ID: 19542310 [TBL] [Abstract][Full Text] [Related]
5. The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eisman B; Alonso-Monge R; Román E; Arana D; Nombela C; Pla J Eukaryot Cell; 2006 Feb; 5(2):347-58. PubMed ID: 16467475 [TBL] [Abstract][Full Text] [Related]
6. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. O'Rourke SM; Herskowitz I Mol Biol Cell; 2004 Feb; 15(2):532-42. PubMed ID: 14595107 [TBL] [Abstract][Full Text] [Related]
7. Interaction between the transmembrane domains of Sho1 and Opy2 enhances the signaling efficiency of the Hog1 MAP kinase cascade in Saccharomyces cerevisiae. Takayama T; Yamamoto K; Saito H; Tatebayashi K PLoS One; 2019; 14(1):e0211380. PubMed ID: 30682143 [TBL] [Abstract][Full Text] [Related]
8. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. Tatebayashi K; Yamamoto K; Tanaka K; Tomida T; Maruoka T; Kasukawa E; Saito H EMBO J; 2006 Jul; 25(13):3033-44. PubMed ID: 16778768 [TBL] [Abstract][Full Text] [Related]
9. The transmembrane protein Opy2 mediates activation of the Cek1 MAP kinase in Candida albicans. Herrero de Dios C; Román E; Diez C; Alonso-Monge R; Pla J Fungal Genet Biol; 2013 Jan; 50():21-32. PubMed ID: 23149115 [TBL] [Abstract][Full Text] [Related]
10. The lack of upstream elements of the Cek1 and Hog1 mediated pathways leads to a synthetic lethal phenotype upon osmotic stress in Candida albicans. Herrero-de-Dios C; Alonso-Monge R; Pla J Fungal Genet Biol; 2014 Aug; 69():31-42. PubMed ID: 24905535 [TBL] [Abstract][Full Text] [Related]
11. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. Tatebayashi K; Takekawa M; Saito H EMBO J; 2003 Jul; 22(14):3624-34. PubMed ID: 12853477 [TBL] [Abstract][Full Text] [Related]
12. How the Pathogenic Fungus Alternaria alternata Copes with Stress via the Response Regulators SSK1 and SHO1. Yu PL; Chen LH; Chung KR PLoS One; 2016; 11(2):e0149153. PubMed ID: 26863027 [TBL] [Abstract][Full Text] [Related]
13. The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Arana DM; Nombela C; Alonso-Monge R; Pla J Microbiology (Reading); 2005 Apr; 151(Pt 4):1033-1049. PubMed ID: 15817773 [TBL] [Abstract][Full Text] [Related]
14. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Chauhan N; Inglis D; Roman E; Pla J; Li D; Calera JA; Calderone R Eukaryot Cell; 2003 Oct; 2(5):1018-24. PubMed ID: 14555484 [TBL] [Abstract][Full Text] [Related]
15. Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade by different mechanisms. Tanaka K; Tatebayashi K; Nishimura A; Yamamoto K; Yang HY; Saito H Sci Signal; 2014 Feb; 7(314):ra21. PubMed ID: 24570489 [TBL] [Abstract][Full Text] [Related]
16. Activation of the HOG pathway upon cold stress in Saccharomyces cerevisiae. Hayashi M; Maeda T J Biochem; 2006 Apr; 139(4):797-803. PubMed ID: 16672281 [TBL] [Abstract][Full Text] [Related]
17. Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway. Vallejo MC; Mayinger P PLoS One; 2015; 10(9):e0137199. PubMed ID: 26340004 [TBL] [Abstract][Full Text] [Related]
18. The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae. García R; Rodríguez-Peña JM; Bermejo C; Nombela C; Arroyo J J Biol Chem; 2009 Apr; 284(16):10901-11. PubMed ID: 19234305 [TBL] [Abstract][Full Text] [Related]
19. Sho1p Connects Glycolysis to Ras1-cAMP Signaling and Is Required for Microcolony Formation in Candida albicans. Kumar R; Maulik M; Pathirana RU; Cullen PJ; Edgerton M mSphere; 2020 Jul; 5(4):. PubMed ID: 32641426 [No Abstract] [Full Text] [Related]
20. Activation of the Hog1 MAPK by the Ssk2/Ssk22 MAP3Ks, in the absence of the osmosensors, is not sufficient to trigger osmostress adaptation in Saccharomyces cerevisiae. Vázquez-Ibarra A; Subirana L; Ongay-Larios L; Kawasaki L; Rojas-Ortega E; Rodríguez-González M; de Nadal E; Posas F; Coria R FEBS J; 2018 Mar; 285(6):1079-1096. PubMed ID: 29341399 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]