BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16288665)

  • 1. Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria.
    Rey S; Gardy JL; Brinkman FS
    BMC Genomics; 2005 Nov; 6():162. PubMed ID: 16288665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteome-wide identification of predominant subcellular protein localizations in a bacterial model organism.
    Stekhoven DJ; Omasits U; Quebatte M; Dehio C; Ahrens CH
    J Proteomics; 2014 Mar; 99():123-37. PubMed ID: 24486812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification of the subcellular localization of the Escherichia coli B proteome using experimental and computational methods.
    Han MJ; Yun H; Lee JW; Lee YH; Lee SY; Yoo JS; Kim JY; Kim JF; Hur CG
    Proteomics; 2011 Apr; 11(7):1213-27. PubMed ID: 21337514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of functional interaction networks through consensus localization predictions of the human proteome.
    Park S; Yang JS; Jang SK; Kim S
    J Proteome Res; 2009 Jul; 8(7):3367-76. PubMed ID: 19415893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-kingdom prediction certainty evaluation of protein subcellular localization tools: microbial pathogenesis approach for deciphering host microbe interaction.
    Khan AA; Khan Z; Kalam MA; Khan AA
    Brief Bioinform; 2018 Jan; 19(1):12-22. PubMed ID: 27758808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Chou's 5-steps rule to predict the subcellular localization of gram-negative and gram-positive bacterial proteins by multi-label learning based on gene ontology annotation and profile alignment.
    Bouziane H; Chouarfia A
    J Integr Bioinform; 2020 Jun; 18(1):51-79. PubMed ID: 32598314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dataset of human fetal liver proteome identified by subcellular fractionation and multiple protein separation and identification technology.
    Ying W; Jiang Y; Guo L; Hao Y; Zhang Y; Wu S; Zhong F; Wang J; Shi R; Li D; Wan P; Li X; Wei H; Li J; Wang Z; Xue X; Cai Y; Zhu Y; Qian X; He F
    Mol Cell Proteomics; 2006 Sep; 5(9):1703-7. PubMed ID: 16815949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of protein subcellular localization.
    Yu CS; Chen YC; Lu CH; Hwang JK
    Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PSORTdb--an expanded, auto-updated, user-friendly protein subcellular localization database for Bacteria and Archaea.
    Yu NY; Laird MR; Spencer C; Brinkman FS
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D241-4. PubMed ID: 21071402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PSORTdb: a protein subcellular localization database for bacteria.
    Rey S; Acab M; Gardy JL; Laird MR; deFays K; Lambert C; Brinkman FS
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D164-8. PubMed ID: 15608169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LocateP: genome-scale subcellular-location predictor for bacterial proteins.
    Zhou M; Boekhorst J; Francke C; Siezen RJ
    BMC Bioinformatics; 2008 Mar; 9():173. PubMed ID: 18371216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular protein localization (cell envelope) in Phaeobacter inhibens DSM 17395.
    Koßmehl S; Wöhlbrand L; Drüppel K; Feenders C; Blasius B; Rabus R
    Proteomics; 2013 Oct; 13(18-19):2743-60. PubMed ID: 23907795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational prediction of subcellular localization.
    Nakai K; Horton P
    Methods Mol Biol; 2007; 390():429-66. PubMed ID: 17951705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling.
    Mawuenyega KG; Forst CV; Dobos KM; Belisle JT; Chen J; Bradbury EM; Bradbury AR; Chen X
    Mol Biol Cell; 2005 Jan; 16(1):396-404. PubMed ID: 15525680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validating subcellular localization prediction tools with mycobacterial proteins.
    Restrepo-Montoya D; Vizcaíno C; Niño LF; Ocampo M; Patarroyo ME; Patarroyo MA
    BMC Bioinformatics; 2009 May; 10():134. PubMed ID: 19422713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage.
    Boisvert FM; Lam YW; Lamont D; Lamond AI
    Mol Cell Proteomics; 2010 Mar; 9(3):457-70. PubMed ID: 20026476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SubCellProt: predicting protein subcellular localization using machine learning approaches.
    Garg P; Sharma V; Chaudhari P; Roy N
    In Silico Biol; 2009; 9(1-2):35-44. PubMed ID: 19537160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling Cell Lines Nuclear Sub-proteome.
    Poersch A; Maria AG; Palma CS; Grassi ML; Albuquerque D; Thomé CH; Faça VM
    Methods Mol Biol; 2017; 1550():35-46. PubMed ID: 28188521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian system integrating expression data with sequence patterns for localizing proteins: comprehensive application to the yeast genome.
    Drawid A; Gerstein M
    J Mol Biol; 2000 Aug; 301(4):1059-75. PubMed ID: 10966805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An SVM-based system for predicting protein subnuclear localizations.
    Lei Z; Dai Y
    BMC Bioinformatics; 2005 Dec; 6():291. PubMed ID: 16336650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.