BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 16288727)

  • 1. Cell-mediated LDL oxidation: the impact of transition metals and transferrin.
    Van Campenhout A; Heytens E; Van Campenhout C; Lagrou AR; Manuel-y-Keenoy B
    Biochem Biophys Res Commun; 2005 Dec; 338(3):1617-24. PubMed ID: 16288727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant.
    Mukhopadhyay CK; Fox PL
    Biochemistry; 1998 Oct; 37(40):14222-9. PubMed ID: 9760260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-induced copper ion-mediated low density lipoprotein oxidation increases during in vivo monocyte-to-macrophage differentiation.
    Fuhrman B; Shiner M; Volkova N; Aviram M
    Free Radic Biol Med; 2004 Jul; 37(2):259-71. PubMed ID: 15203197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redistribution of metal ions to control low density lipoprotein oxidation in Ham's F10 medium.
    Firth CA; Gieseg SP
    Free Radic Res; 2007 Oct; 41(10):1109-15. PubMed ID: 17886032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of bicarbonate on iron-mediated oxidation of low-density lipoprotein.
    Arai H; Berlett BS; Chock PB; Stadtman ER
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10472-7. PubMed ID: 16027354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endothelial Chlamydia pneumoniae infection promotes oxidation of LDL.
    Dittrich R; Dragonas C; Mueller A; Maltaris T; Rupp J; Beckmann MW; Maass M
    Biochem Biophys Res Commun; 2004 Jun; 319(2):501-5. PubMed ID: 15178434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LDL oxidation by THP-1 monocytes: implication of HNP-1, SgIII and DMT-1.
    He C; Huang R; Du F; Zheng F; Wei L; Wu J
    Clin Chim Acta; 2009 Apr; 402(1-2):102-6. PubMed ID: 19150442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aluminum ions stimulate the oxidizability of low density lipoprotein by Fe2+: implication in hemodialysis mediated atherogenic LDL modification.
    Kapiotis S; Hermann M; Exner M; Sturm BN; Scheiber-Mojdehkar B; Goldenberg H; Kopp S; Chiba P; Gmeiner BM
    Free Radic Res; 2005 Nov; 39(11):1225-31. PubMed ID: 16298749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of transition metals by apolipoprotein A-I-containing plasma lipoproteins: inhibition of oxidation of low density lipoproteins.
    Kunitake ST; Jarvis MR; Hamilton RL; Kane JP
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):6993-7. PubMed ID: 1495991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homocysteine strongly enhances metal-catalyzed LDL oxidation in the presence of cystine and cysteine.
    Pfanzagl B; Tribl F; Koller E; Möslinger T
    Atherosclerosis; 2003 May; 168(1):39-48. PubMed ID: 12732385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of metal ion-dependent oxidation of human low density lipoprotein.
    Lynch SM; Frei B
    J Nutr; 1996 Apr; 126(4 Suppl):1063S-6S. PubMed ID: 8642433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Products of the reaction of HOCl with tryptophan protect LDL from atherogenic modification.
    Kapiotis S; Jirovetz L; Hermann M; Laggner H; Exner M; Esterbauer H; Gmeiner BM
    Biochimie; 2006 Jul; 88(7):785-91. PubMed ID: 16488068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of caffeine on oxidation susceptibility of human plasma low density lipoproteins.
    Krisko A; Kveder M; Pifat G
    Clin Chim Acta; 2005 May; 355(1-2):47-53. PubMed ID: 15820477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells.
    Ehrenwald E; Fox PL
    J Clin Invest; 1996 Feb; 97(3):884-90. PubMed ID: 8609249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effect of dietary curcumin and capsaicin on induced oxidation of low-density lipoprotein, iron-induced hepatotoxicity and carrageenan-induced inflammation in experimental rats.
    Manjunatha H; Srinivasan K
    FEBS J; 2006 Oct; 273(19):4528-37. PubMed ID: 16956363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant/prooxidant effects of dietary non-flavonoid phenols on the Cu2+-induced oxidation of human low-density lipoprotein (LDL).
    Briante R; Febbraio F; Nucci R
    Chem Biodivers; 2004 Nov; 1(11):1716-29. PubMed ID: 17191812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron released from transferrin at acidic pH can catalyse the oxidation of low density lipoprotein.
    Lamb DJ; Leake DS
    FEBS Lett; 1994 Sep; 352(1):15-8. PubMed ID: 7925932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock protein 27 downregulates the transferrin receptor 1-mediated iron uptake.
    Chen H; Zheng C; Zhang Y; Chang YZ; Qian ZM; Shen X
    Int J Biochem Cell Biol; 2006; 38(8):1402-16. PubMed ID: 16546437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-density lipoprotein modification by normal, myeloperoxidase-deficient and NADPH oxidase-deficient granulocytes and the impact of redox active transition metal ions.
    Gerber CE; Bruchelt G; Ledinski G; Greilberger J; Niethammer D; Jürgens G
    Redox Rep; 2002; 7(2):111-9. PubMed ID: 12189057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-reactive protein inhibits in vitro oxidation of low-density lipoprotein.
    Rufail ML; Ramage SC; van Antwerpen R
    FEBS Lett; 2006 Oct; 580(22):5155-60. PubMed ID: 16962105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.