BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16288913)

  • 1. Asp79 makes a large, unfavorable contribution to the stability of RNase Sa.
    Trevino SR; Gokulan K; Newsom S; Thurlkill RL; Shaw KL; Mitkevich VA; Makarov AA; Sacchettini JC; Scholtz JM; Pace CN
    J Mol Biol; 2005 Dec; 354(4):967-78. PubMed ID: 16288913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bonding markedly reduces the pK of buried carboxyl groups in proteins.
    Thurlkill RL; Grimsley GR; Scholtz JM; Pace CN
    J Mol Biol; 2006 Sep; 362(3):594-604. PubMed ID: 16934292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-charge interactions are key determinants of the pK values of ionizable groups in ribonuclease Sa (pI=3.5) and a basic variant (pI=10.2).
    Laurents DV; Huyghues-Despointes BM; Bruix M; Thurlkill RL; Schell D; Newsom S; Grimsley GR; Shaw KL; Treviño S; Rico M; Briggs JM; Antosiewicz JM; Scholtz JM; Pace CN
    J Mol Biol; 2003 Jan; 325(5):1077-92. PubMed ID: 12527309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine hydrogen bonds make a large contribution to protein stability.
    Pace CN; Horn G; Hebert EJ; Bechert J; Shaw K; Urbanikova L; Scholtz JM; Sevcik J
    J Mol Biol; 2001 Sep; 312(2):393-404. PubMed ID: 11554795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray and thermodynamic studies of staphylococcal nuclease variants I92E and I92K: insights into polarity of the protein interior.
    Nguyen DM; Leila Reynald R; Gittis AG; Lattman EE
    J Mol Biol; 2004 Aug; 341(2):565-74. PubMed ID: 15276844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1.
    Hebert EJ; Giletto A; Sevcik J; Urbanikova L; Wilson KS; Dauter Z; Pace CN
    Biochemistry; 1998 Nov; 37(46):16192-200. PubMed ID: 9819211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2 and Sa3.
    Pace CN; Hebert EJ; Shaw KL; Schell D; Both V; Krajcikova D; Sevcik J; Wilson KS; Dauter Z; Hartley RW; Grimsley GR
    J Mol Biol; 1998 May; 279(1):271-86. PubMed ID: 9636716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribonuclease Sa conformational stability studied by NMR-monitored hydrogen exchange.
    Laurents DV; Scholtz JM; Rico M; Pace CN; Bruix M
    Biochemistry; 2005 May; 44(21):7644-55. PubMed ID: 15909979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa.
    Alston RW; Urbanikova L; Sevcik J; Lasagna M; Reinhart GD; Scholtz JM; Pace CN
    Biophys J; 2004 Dec; 87(6):4036-47. PubMed ID: 15377518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bonding increases packing density in the protein interior.
    Schell D; Tsai J; Scholtz JM; Pace CN
    Proteins; 2006 May; 63(2):278-82. PubMed ID: 16353166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper.
    Marti DN; Bosshard HR
    Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular basis for nucleotide-binding specificity: role of the exocyclic amino group "N2" in recognition by a guanylyl-ribonuclease.
    Schrift GL; Waldron TT; Timmons MA; Ramaswamy S; Kearney WR; Murphy KP
    J Mol Biol; 2006 Jan; 355(1):72-84. PubMed ID: 16300786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational and structural-based analyses of the osmolyte effect on protein stability.
    Takano K; Saito M; Morikawa M; Kanaya S
    J Biochem; 2004 Jun; 135(6):701-8. PubMed ID: 15213245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa.
    Shaw KL; Grimsley GR; Yakovlev GI; Makarov AA; Pace CN
    Protein Sci; 2001 Jun; 10(6):1206-15. PubMed ID: 11369859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease.
    Baran KL; Chimenti MS; Schlessman JL; Fitch CA; Herbst KJ; Garcia-Moreno BE
    J Mol Biol; 2008 Jun; 379(5):1045-62. PubMed ID: 18499123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and thermodynamic thermal stabilities of ribonuclease A and ribonuclease B.
    Arnold U; Ulbrich-Hofmann R
    Biochemistry; 1997 Feb; 36(8):2166-72. PubMed ID: 9047316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Buried, charged, non-ion-paired aspartic acid 76 contributes favorably to the conformational stability of ribonuclease T1.
    Giletto A; Pace CN
    Biochemistry; 1999 Oct; 38(40):13379-84. PubMed ID: 10529213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing protein stability by altering long-range coulombic interactions.
    Grimsley GR; Shaw KL; Fee LR; Alston RW; Huyghues-Despointes BM; Thurlkill RL; Scholtz JM; Pace CN
    Protein Sci; 1999 Sep; 8(9):1843-9. PubMed ID: 10493585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural, thermodynamic, and mutational analyses of a psychrotrophic RNase HI.
    Tadokoro T; You DJ; Abe Y; Chon H; Matsumura H; Koga Y; Takano K; Kanaya S
    Biochemistry; 2007 Jun; 46(25):7460-8. PubMed ID: 17536836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in stability upon charge reversal and neutralization substitution in staphylococcal nuclease are dominated by favorable electrostatic effects.
    Schwehm JM; Fitch CA; Dang BN; García-Moreno E B; Stites WE
    Biochemistry; 2003 Feb; 42(4):1118-28. PubMed ID: 12549934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.