These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 16289111)
1. Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). Trowbridge RE; Dittmar K; Whiting MF J Invertebr Pathol; 2006 Jan; 91(1):64-8. PubMed ID: 16289111 [TBL] [Abstract][Full Text] [Related]
2. The phylogeny and evolution of host choice in the Hippoboscoidea (Diptera) as reconstructed using four molecular markers. Petersen FT; Meier R; Kutty SN; Wiegmann BM Mol Phylogenet Evol; 2007 Oct; 45(1):111-22. PubMed ID: 17583536 [TBL] [Abstract][Full Text] [Related]
3. An effect of 16S rRNA intercistronic variability on coevolutionary analysis in symbiotic bacteria: molecular phylogeny of Arsenophonus triatominarum. Sorfová P; Skeríková A; Hypsa V Syst Appl Microbiol; 2008 Jun; 31(2):88-100. PubMed ID: 18485654 [TBL] [Abstract][Full Text] [Related]
4. Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Thao ML; Baumann P Curr Microbiol; 2004 Feb; 48(2):140-4. PubMed ID: 15057483 [TBL] [Abstract][Full Text] [Related]
5. Phylogeny of Photorhabdus and Xenorhabdus species and strains as determined by comparison of partial 16S rRNA gene sequences. Liu J; Berry R; Poinar G; Moldenke A Int J Syst Bacteriol; 1997 Oct; 47(4):948-51. PubMed ID: 9336891 [TBL] [Abstract][Full Text] [Related]
6. Molecular phylogenetic analysis of nycteribiid and streblid bat flies (Diptera: Brachycera, Calyptratae): implications for host associations and phylogeographic origins. Dittmar K; Porter ML; Murray S; Whiting MF Mol Phylogenet Evol; 2006 Jan; 38(1):155-70. PubMed ID: 16087354 [TBL] [Abstract][Full Text] [Related]
7. Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae). Morse SF; Bush SE; Patterson BD; Dick CW; Gruwell ME; Dittmar K Appl Environ Microbiol; 2013 May; 79(9):2952-61. PubMed ID: 23435889 [TBL] [Abstract][Full Text] [Related]
8. Identification of symbiotic bacteria (Photorhabdus and Xenorhabdus) from the entomopathogenic nematodes Heterorhabditis marelatus and Steinernema oregonense based on 16S rDNA sequence. Liu J; Berry RE; Blouin MS J Invertebr Pathol; 2001 Feb; 77(2):87-91. PubMed ID: 11273687 [TBL] [Abstract][Full Text] [Related]
9. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. Nováková E; Hypsa V; Moran NA BMC Microbiol; 2009 Jul; 9():143. PubMed ID: 19619300 [TBL] [Abstract][Full Text] [Related]
10. Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens. Szállás E; Koch C; Fodor A; Burghardt J; Buss O; Szentirmai A; Nealson KH; Stackebrandt E Int J Syst Bacteriol; 1997 Apr; 47(2):402-7. PubMed ID: 9103628 [TBL] [Abstract][Full Text] [Related]
11. Phylogenetic relationships of entomopathogenic nematophilic bacteria: Xenorhabdus spp. and Photorhabdus sp. Suzuki T; Yabusaki H; Nishimura Y J Basic Microbiol; 1996; 36(5):351-4. PubMed ID: 8914266 [TBL] [Abstract][Full Text] [Related]
12. New Wolbachia endosymbionts from Nearctic and Neotropical fleas (Siphonaptera). Dittmar K; Whiting MF J Parasitol; 2004 Oct; 90(5):953-7. PubMed ID: 15562592 [TBL] [Abstract][Full Text] [Related]
13. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Duron O; Schneppat UE; Berthomieu A; Goodman SM; Droz B; Paupy C; Nkoghe JO; Rahola N; Tortosa P Mol Ecol; 2014 Apr; 23(8):2105-17. PubMed ID: 24612422 [TBL] [Abstract][Full Text] [Related]
14. Isolation, pure culture, and characterization of "Candidatus Arsenophonus arthropodicus," an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. Dale C; Beeton M; Harbison C; Jones T; Pontes M Appl Environ Microbiol; 2006 Apr; 72(4):2997-3004. PubMed ID: 16598007 [TBL] [Abstract][Full Text] [Related]
16. Inability of the polyphasic approach to systematics to determine the relatedness of the genera Xenorhabdus and Photorhabdus. Rainey FA; Ehlers RU; Stackebrandt E Int J Syst Bacteriol; 1995 Apr; 45(2):379-81. PubMed ID: 7537072 [TBL] [Abstract][Full Text] [Related]
17. A robust phylogenetic framework for the bacterial genus Photorhabdus and its use in studying the evolution and maintenance of bioluminescence: a case for 16S, gyrB, and glnA. Peat SM; Ffrench-Constant RH; Waterfield NR; Marokházi J; Fodor A; Adams BJ Mol Phylogenet Evol; 2010 Nov; 57(2):728-40. PubMed ID: 20732433 [TBL] [Abstract][Full Text] [Related]
18. Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Tóth T; Lakatos T Int J Syst Evol Microbiol; 2008 Nov; 58(Pt 11):2579-81. PubMed ID: 18984696 [TBL] [Abstract][Full Text] [Related]
19. Molecular typing of Yersinia frederiksenii strains by means of 16s rDNA and gyrB genes sequence analyses. Demarta A; De Respinis S; Dolina M; Peduzzi R FEMS Microbiol Lett; 2004 Sep; 238(2):423-8. PubMed ID: 15358429 [TBL] [Abstract][Full Text] [Related]
20. The phylogenetic position of Serratia, Buttiauxella and some other genera of the family Enterobacteriaceae. Spröer C; Mendrock U; Swiderski J; Lang E; Stackebrandt E Int J Syst Bacteriol; 1999 Oct; 49 Pt 4():1433-8. PubMed ID: 10555323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]