These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 16289127)

  • 1. Coupling between electroosmotically driven flow and bipolar faradaic depolarization processes in electron-conducting microchannels.
    Qian S; Duval JF
    J Colloid Interface Sci; 2006 May; 297(1):341-52. PubMed ID: 16289127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of electroosmotic flows in electron-conducting microchannels by coupled quasi-reversible faradaic and adsorption-mediated depolarization.
    Qian S; Duval JF
    J Colloid Interface Sci; 2006 Aug; 300(1):413-28. PubMed ID: 16725151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Faradaic double layer depolarization in electrokinetics: Onsager relations and substrate limitations.
    van Leeuwen HP; Duval JF
    J Colloid Interface Sci; 2007 May; 309(2):350-9. PubMed ID: 17336994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-reversible faradaic depolarization processes in the electrokinetics of the metal/solution interface.
    Duval JF; Buffle J; van Leeuwen HP
    J Phys Chem B; 2006 Mar; 110(12):6081-94. PubMed ID: 16553420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the use of electrokinetic phenomena of the second kind for probing electrode kinetic properties of modified electron-conducting surfaces.
    Duval JF; Sorrenti E; Waldvogel Y; Görner T; De Donato P
    Phys Chem Chem Phys; 2007 Apr; 9(14):1713-29. PubMed ID: 17396183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.
    Xuan X; Li D
    J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically driven flow near a colloidal particle close to an electrode with a Faradaic current.
    Ristenpart WD; Aksay IA; Saville DA
    Langmuir; 2007 Mar; 23(7):4071-80. PubMed ID: 17335253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroosmotically enhanced mass transfer through polyacrylamide gels.
    Matos MA; White LR; Tilton RD
    J Colloid Interface Sci; 2006 Aug; 300(1):429-36. PubMed ID: 16603176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ac electroosmosis in rectangular microchannels.
    Campisi M; Accoto D; Dario P
    J Chem Phys; 2005 Nov; 123(20):204724. PubMed ID: 16351310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling between electrokinetics and electrode kinetics by bipolar faradaic depolarisation processes in microfluidic channels.
    Duval JFL; van Leeuwen HP
    Adv Colloid Interface Sci; 2020 Jan; 275():102074. PubMed ID: 31761269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels.
    Chakraborty S
    Anal Chim Acta; 2007 Dec; 605(2):175-84. PubMed ID: 18036381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric field induced electron transfer at the adsorbate-surface interface. Effect of the type of metal surface.
    Migani A; Sousa C; Sanz F; Illas F
    Phys Chem Chem Phys; 2005 Sep; 7(18):3353-8. PubMed ID: 16240050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boundary effects on electrophoresis of a colloidal cylinder with a nonuniform zeta potential distribution.
    Hsieh TH; Keh HJ
    J Colloid Interface Sci; 2007 Nov; 315(1):343-54. PubMed ID: 17669415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A linear analysis of the effect of Faradaic currents on traveling-wave electroosmosis.
    Ramos A; González A; García-Sánchez P; Castellanos A
    J Colloid Interface Sci; 2007 May; 309(2):323-31. PubMed ID: 17346725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic pumping in microchips with nonhomogeneous distribution of electrolytes.
    Chien RL; Bousse L
    Electrophoresis; 2002 Jun; 23(12):1862-9. PubMed ID: 12116129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength.
    Chen L; Conlisk AT
    Biomed Microdevices; 2009 Feb; 11(1):251-8. PubMed ID: 18850273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-fluid electroosmotic flow in microchannels.
    Gao Y; Wong TN; Yang C; Ooi KT
    J Colloid Interface Sci; 2005 Apr; 284(1):306-14. PubMed ID: 15752818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized model for time periodic electroosmotic flows with overlapping electrical double layers.
    Chakraborty S; Srivastava AK
    Langmuir; 2007 Nov; 23(24):12421-8. PubMed ID: 17949121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels.
    Conlisk AT
    Electrophoresis; 2005 May; 26(10):1896-912. PubMed ID: 15832301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.