These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 16289287)
1. Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments. King CK; Gale SA; Hyne RV; Stauber JL; Simpson SL; Hickey CW Chemosphere; 2006 Jun; 63(9):1466-76. PubMed ID: 16289287 [TBL] [Abstract][Full Text] [Related]
2. An assessment of five Australian polychaetes and bivalves for use in whole-sediment toxicity tests: toxicity and accumulation of copper and zinc from water and sediment. King CK; Dowse MC; Simpson SL; Jolley DF Arch Environ Contam Toxicol; 2004 Oct; 47(3):314-23. PubMed ID: 15386125 [TBL] [Abstract][Full Text] [Related]
3. Acute toxicity and bioaccumulation of aqueous and sediment-bound metals in the estuarine amphipod Melita plumulosa. King CK; Gale SA; Stauber JL Environ Toxicol; 2006 Oct; 21(5):489-504. PubMed ID: 16944510 [TBL] [Abstract][Full Text] [Related]
4. Effect of nutrition on toxicity of contaminants to the epibenthic amphipod Melita plumulosa. Spadaro DA; Micevska T; Simpson SL Arch Environ Contam Toxicol; 2008 Nov; 55(4):593-602. PubMed ID: 18340476 [TBL] [Abstract][Full Text] [Related]
5. Relative sensitivities of toxicity test protocols with the amphipods Eohaustorius estuarius and Ampelisca abdita. Anderson BS; Lowe S; Phillips BM; Hunt JW; Vorhees J; Clark S; Tjeerdema RS Ecotoxicol Environ Saf; 2008 Jan; 69(1):24-31. PubMed ID: 17572492 [TBL] [Abstract][Full Text] [Related]
6. Foraging, feeding, and reproduction on silica substrate: Increased waterborne zinc toxicity to the estuarine epibenthic amphipod Melita plumulosa. Mann RM; Hyne RV; Ascheri LM Environ Toxicol Chem; 2011 Jul; 30(7):1649-58. PubMed ID: 21472772 [TBL] [Abstract][Full Text] [Related]
7. Bioavailability of sediment-associated Cu and Zn to Daphnia magna. Gillis PL; Wood CM; Ranville JF; Chow-Fraser P Aquat Toxicol; 2006 May; 77(4):402-11. PubMed ID: 16488492 [TBL] [Abstract][Full Text] [Related]
8. Toxicity of metals to the bivalve Tellina deltoidalis and relationships between metal bioaccumulation and metal partitioning between seawater and marine sediments. King CK; Dowse MC; Simpson SL Arch Environ Contam Toxicol; 2010 Apr; 58(3):657-65. PubMed ID: 19888624 [TBL] [Abstract][Full Text] [Related]
9. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA. Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524 [TBL] [Abstract][Full Text] [Related]
10. Equilibrium partitioning theory to predict the sediment toxicity of the anionic surfactant C(12)-2-LAS to Corophium volutator. Rico-Rico A; Temara A; Hermens JL Environ Pollut; 2009 Feb; 157(2):575-81. PubMed ID: 18947912 [TBL] [Abstract][Full Text] [Related]
11. Effects of copper in flooded Florida agricultural soils on Hyalella azteca. Hoang TC; Schuler LJ; Rand GM Arch Environ Contam Toxicol; 2009 Apr; 56(3):459-67. PubMed ID: 18855042 [TBL] [Abstract][Full Text] [Related]
12. The influence of small-scale circum-neutral pH change on Cu-bioavailability and toxicity to an estuarine bivalve (Austriella cf plicifera) in whole-sediment toxicity tests. Hutchins CM; Teasdale PR; Yip Lee S; Simpson SL Sci Total Environ; 2008 Nov; 405(1-3):87-95. PubMed ID: 18675442 [TBL] [Abstract][Full Text] [Related]
13. Chronic sublethal sediment toxicity testing using the estuarine amphipod, Melita plumulosa (Zeidler): evaluation using metal-spiked and field-contaminated sediments. Gale SA; King CK; Hyne RV Environ Toxicol Chem; 2006 Jul; 25(7):1887-98. PubMed ID: 16833152 [TBL] [Abstract][Full Text] [Related]
14. Acute marine sediment toxicity: a potential new test with the amphipod Gammarus locusta. Costa FO; Correia AD; Costa MH Ecotoxicol Environ Saf; 1998; 40(1-2):81-7. PubMed ID: 9626540 [TBL] [Abstract][Full Text] [Related]
15. Ecological impacts of lead mining on Ozark streams: toxicity of sediment and pore water. Besser JM; Brumbaugh WG; Allert AL; Poulton BC; Schmitt CJ; Ingersoll CG Ecotoxicol Environ Saf; 2009 Feb; 72(2):516-26. PubMed ID: 18603298 [TBL] [Abstract][Full Text] [Related]
16. Accumulation and toxicity of metal oxide nanoparticles in a soft-sediment estuarine amphipod. Hanna SK; Miller RJ; Zhou D; Keller AA; Lenihan HS Aquat Toxicol; 2013 Oct; 142-143():441-6. PubMed ID: 24121101 [TBL] [Abstract][Full Text] [Related]
17. Avoidance response of sediment living amphipods to zinc pyrithione as a measure of sediment toxicity. Eriksson Wiklund AK; Börjesson T; Wiklund SJ Mar Pollut Bull; 2006 Jan; 52(1):96-9. PubMed ID: 16229864 [TBL] [Abstract][Full Text] [Related]
18. [Effect of zinc-enriched sediments, in open and isolated systems, on three species of benthonic invertebrates]. Galar Martínez M; Martínez-Tabche L; Sánchez-Hidalgo E; López López E Rev Biol Trop; 2006 Jun; 54(2):451-60. PubMed ID: 18494315 [TBL] [Abstract][Full Text] [Related]
19. The effect of manipulating sediment pH on the porewater chemistry of copper- and zinc-spiked sediments. Hutchins CM; Teasdale PR; Lee J; Simpson SL Chemosphere; 2007 Oct; 69(7):1089-99. PubMed ID: 17572473 [TBL] [Abstract][Full Text] [Related]
20. Single versus combined exposure of Hyalella azteca to zinc contaminated sediment and food. Nguyen LT; Muyssen BT; Janssen CR Chemosphere; 2012 Mar; 87(1):84-90. PubMed ID: 22197310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]