These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 16289487)

  • 1. Antinociception following application of DAMGO to the basolateral amygdala results from a direct interaction of DAMGO with Mu opioid receptors in the amygdala.
    Shin MS; Helmstetter FJ
    Brain Res; 2005 Dec; 1064(1-2):56-65. PubMed ID: 16289487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla.
    Helmstetter FJ; Tershner SA; Poore LH; Bellgowan PS
    Brain Res; 1998 Jan; 779(1-2):104-18. PubMed ID: 9473612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microinfusion of mu but not delta or kappa opioid agonists into the basolateral amygdala results in inhibition of the tail flick reflex in pentobarbital-anesthetized rats.
    Helmstetter FJ; Bellgowan PS; Poore LH
    J Pharmacol Exp Ther; 1995 Oct; 275(1):381-8. PubMed ID: 7562575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buprenorphine blocks epsilon- and micro-opioid receptor-mediated antinociception in the mouse.
    Mizoguchi H; Spaulding A; Leitermann R; Wu HE; Nagase H; Tseng LF
    J Pharmacol Exp Ther; 2003 Jul; 306(1):394-400. PubMed ID: 12721333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional interaction between TRPV1 and mu-opioid receptors in the descending antinociceptive pathway activates glutamate transmission and induces analgesia.
    Maione S; Starowicz K; Cristino L; Guida F; Palazzo E; Luongo L; Rossi F; Marabese I; de Novellis V; Di Marzo V
    J Neurophysiol; 2009 May; 101(5):2411-22. PubMed ID: 19297510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antinociception produced by mu opioid receptor activation in the amygdala is partly dependent on activation of mu opioid and neurotensin receptors in the ventral periaqueductal gray.
    Tershner SA; Helmstetter FJ
    Brain Res; 2000 May; 865(1):17-26. PubMed ID: 10814729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the {mu} opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala.
    Finnegan TF; Chen SR; Pan HL
    J Pharmacol Exp Ther; 2005 Feb; 312(2):441-8. PubMed ID: 15388784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons.
    Rodríguez-Muñoz M; de la Torre-Madrid E; Gaitán G; Sánchez-Blázquez P; Garzón J
    Cell Signal; 2007 Dec; 19(12):2558-71. PubMed ID: 17825524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of mu-opioid receptors inhibits synaptic inputs to spinally projecting rostral ventromedial medulla neurons.
    Finnegan TF; Li DP; Chen SR; Pan HL
    J Pharmacol Exp Ther; 2004 May; 309(2):476-83. PubMed ID: 14724227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of TRPV1-expressing sensory neurons reduces spinal mu opioid receptors but paradoxically potentiates opioid analgesia.
    Chen SR; Pan HL
    J Neurophysiol; 2006 May; 95(5):3086-96. PubMed ID: 16467418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic antidepressant treatment causes a selective reduction of mu-opioid receptor binding and functional coupling to G Proteins in the amygdala of fawn-hooded rats.
    Chen F; Lawrence AJ
    J Pharmacol Exp Ther; 2004 Sep; 310(3):1020-6. PubMed ID: 15121763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DAMGO stimulates the hypothalamo-pituitary-adrenal axis through a mu-2 opioid receptor.
    Eisenberg RM
    J Pharmacol Exp Ther; 1993 Aug; 266(2):985-91. PubMed ID: 8394926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opioid mu receptor activation inhibits sodium currents in prefrontal cortical neurons via a protein kinase A- and C-dependent mechanism.
    Witkowski G; Szulczyk P
    Brain Res; 2006 Jun; 1094(1):92-106. PubMed ID: 16733049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological characterization of high-fat feeding induced by opioid stimulation of the ventral striatum.
    Will MJ; Pratt WE; Kelley AE
    Physiol Behav; 2006 Sep; 89(2):226-34. PubMed ID: 16854442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotransmitters involved in the opioid regulation of prolactin secretion at the end of pregnancy in rats.
    Soaje M; Bregonzio C; Carón RW; Deis RP
    Neuroendocrinology; 2004; 80(1):11-20. PubMed ID: 15340248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of different subtypes of opioid receptors in mediating the nucleus submedius opioid-evoked antiallodynia in a neuropathic pain model of rats.
    Wang JY; Zhao M; Yuan YK; Fan GX; Jia H; Tang JS
    Neuroscience; 2006; 138(4):1319-27. PubMed ID: 16472929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra-amygdalar injection of DAMGO: effects on c-Fos levels in brain sites associated with feeding behavior.
    Levine AS; Olszewski PK; Mullett MA; Pomonis JD; Grace MK; Kotz CM; Billington CJ
    Brain Res; 2004 Jul; 1015(1-2):9-14. PubMed ID: 15223361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the antinociceptive effect of acute morphine in female and male Sprague-Dawley rats using the long-lasting mu-antagonist methocinnamox.
    Peckham EM; Barkley LM; Divin MF; Cicero TJ; Traynor JR
    Brain Res; 2005 Oct; 1058(1-2):137-47. PubMed ID: 16139823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphine induces endocytosis of neuronal mu-opioid receptors through the sustained transfer of Galpha subunits to RGSZ2 proteins.
    Rodríguez-Muñoz M; de la Torre-Madrid E; Sánchez-Blázquez P; Garzón J
    Mol Pain; 2007 Jul; 3():19. PubMed ID: 17634133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of opioid mu receptors in caudal medullary raphe region inhibits the ventilatory response to hypercapnia in anesthetized rats.
    Zhang Z; Xu F; Zhang C; Liang X
    Anesthesiology; 2007 Aug; 107(2):288-97. PubMed ID: 17667574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.