These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 16289518)
1. The effect of heel-pad thickness and loading protocol on measured heel-pad stiffness and a standardized protocol for inter-subject comparability. Spears IR; Miller-Young JE Clin Biomech (Bristol); 2006 Feb; 21(2):204-12. PubMed ID: 16289518 [TBL] [Abstract][Full Text] [Related]
2. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
3. The effect of loading conditions on stress in the barefooted heel pad. Spears IR; Miller-Young JE; Waters M; Rome K Med Sci Sports Exerc; 2005 Jun; 37(6):1030-6. PubMed ID: 15947730 [TBL] [Abstract][Full Text] [Related]
4. An inverse finite-element model of heel-pad indentation. Erdemir A; Viveiros ML; Ulbrecht JS; Cavanagh PR J Biomech; 2006; 39(7):1279-86. PubMed ID: 15907330 [TBL] [Abstract][Full Text] [Related]
5. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results. Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099 [TBL] [Abstract][Full Text] [Related]
6. Constitutive formulation and numerical analysis of the heel pad region. Natali AN; Fontanella CG; Carniel EL Comput Methods Biomech Biomed Engin; 2012; 15(4):401-9. PubMed ID: 21246425 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the optimum heel pad stiffness: a modeling study. Lin CY; Chuang HJ; Cortes DH Australas Phys Eng Sci Med; 2017 Sep; 40(3):585-593. PubMed ID: 28653146 [TBL] [Abstract][Full Text] [Related]
8. Mechanical energy and effective foot mass during impact loading of walking and running. Chi KJ; Schmitt D J Biomech; 2005 Jul; 38(7):1387-95. PubMed ID: 15922749 [TBL] [Abstract][Full Text] [Related]
9. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma. Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391 [TBL] [Abstract][Full Text] [Related]
10. Role of EVA viscoelastic properties in the protective performance of a sport shoe: computational studies. Even-Tzur N; Weisz E; Hirsch-Falk Y; Gefen A Biomed Mater Eng; 2006; 16(5):289-99. PubMed ID: 17075164 [TBL] [Abstract][Full Text] [Related]
11. Experimental validation of a finite element model of a human cadaveric tibia. Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865 [TBL] [Abstract][Full Text] [Related]
12. Constitutive formulation and analysis of heel pad tissues mechanics. Natali AN; Fontanella CG; Carniel EL Med Eng Phys; 2010 Jun; 32(5):516-22. PubMed ID: 20304698 [TBL] [Abstract][Full Text] [Related]
13. Heel skin stiffness effect on the hind foot biomechanics during heel strike. Gu Y; Li J; Ren X; Lake MJ; Zeng Y Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997 [TBL] [Abstract][Full Text] [Related]
14. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. Schileo E; Taddei F; Cristofolini L; Viceconti M J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179 [TBL] [Abstract][Full Text] [Related]
15. Bulk compressive properties of the heel fat pad during walking: a pilot investigation in plantar heel pain. Wearing SC; Smeathers JE; Yates B; Urry SR; Dubois P Clin Biomech (Bristol); 2009 May; 24(4):397-402. PubMed ID: 19232452 [TBL] [Abstract][Full Text] [Related]
16. Finite element modeling for strain rate dependency of fracture resistance in compact bone. Charoenphan S; Polchai A J Biomech Eng; 2007 Feb; 129(1):20-5. PubMed ID: 17227094 [TBL] [Abstract][Full Text] [Related]
17. Microchambers and macrochambers in heel pads: are they functionally different? Hsu CC; Tsai WC; Wang CL; Pao SH; Shau YW; Chuan YS J Appl Physiol (1985); 2007 Jun; 102(6):2227-31. PubMed ID: 17272407 [TBL] [Abstract][Full Text] [Related]
18. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load. Naemi R; Chatzistergos PE; Chockalingam N Med Biol Eng Comput; 2016 Mar; 54(2-3):341-50. PubMed ID: 26044551 [TBL] [Abstract][Full Text] [Related]
19. Force-deformation properties of the human heel pad during barefoot walking. Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425 [TBL] [Abstract][Full Text] [Related]
20. Diabetic effects on microchambers and macrochambers tissue properties in human heel pads. Hsu CC; Tsai WC; Hsiao TY; Tseng FY; Shau YW; Wang CL; Lin SC Clin Biomech (Bristol); 2009 Oct; 24(8):682-6. PubMed ID: 19619918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]