These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16289582)

  • 1. Changes in response to spinal cord injury with development: vascularization, hemorrhage and apoptosis.
    Whalley K; O'Neill P; Ferretti P
    Neuroscience; 2006 Feb; 137(3):821-32. PubMed ID: 16289582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular insights of the injured lesions of rat spinal cords: Inflammation, apoptosis, and cell survival.
    Ahn YH; Lee G; Kang SK
    Biochem Biophys Res Commun; 2006 Sep; 348(2):560-70. PubMed ID: 16890196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Dec; 66(14):1564-83. PubMed ID: 17058193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The p75 neurotrophin receptor is essential for neuronal cell survival and improvement of functional recovery after spinal cord injury.
    Chu GK; Yu W; Fehlings MG
    Neuroscience; 2007 Sep; 148(3):668-82. PubMed ID: 17706365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional protection of pentoxifylline against spinal cord ischemia/reperfusion injury in rabbits: necrosis and apoptosis effects.
    Zhu DJ; Xia B; Bi Q; Zhang SJ; Qiu BS; Zhao C
    Chin Med J (Engl); 2008 Dec; 121(23):2444-9. PubMed ID: 19102966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early necrosis and apoptosis of Schwann cells transplanted into the injured rat spinal cord.
    Hill CE; Hurtado A; Blits B; Bahr BA; Wood PM; Bartlett Bunge M; Oudega M
    Eur J Neurosci; 2007 Sep; 26(6):1433-45. PubMed ID: 17880386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic efficacy of SJA6017, a calpain inhibitor, in rat spinal cord injury.
    Akdemir O; Uçankale M; Karaoğlan A; Barut S; Sağmanligil A; Bilguvar K; Cirakoğlu B; Sahan E; Colak A
    J Clin Neurosci; 2008 Oct; 15(10):1130-6. PubMed ID: 18656362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related differences in the local cellular and molecular responses to injury in developing spinal cord of the opossum, Monodelphis domestica.
    Lane MA; Truettner JS; Brunschwig JP; Gomez A; Bunge MB; Dietrich WD; Dziegielewska KM; Ek CJ; Vandeberg JL; Saunders NR
    Eur J Neurosci; 2007 Mar; 25(6):1725-42. PubMed ID: 17432961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes within maturing neurons limit axonal regeneration in the developing spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Mar; 66(4):348-60. PubMed ID: 16408302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of programmed cell death in populations of developing spinal motoneurons in chicken, mouse, and rat.
    Yamamoto Y; Henderson CE
    Dev Biol; 1999 Oct; 214(1):60-71. PubMed ID: 10491257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability.
    Lange S; Gögel S; Leung KY; Vernay B; Nicholas AP; Causey CP; Thompson PR; Greene ND; Ferretti P
    Dev Biol; 2011 Jul; 355(2):205-14. PubMed ID: 21539830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degenerative and regenerative mechanisms governing spinal cord injury.
    Profyris C; Cheema SS; Zang D; Azari MF; Boyle K; Petratos S
    Neurobiol Dis; 2004 Apr; 15(3):415-36. PubMed ID: 15056450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt.
    Ferretti P; Zhang F; O'Neill P
    Dev Dyn; 2003 Feb; 226(2):245-56. PubMed ID: 12557203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury.
    Yu WR; Liu T; Fehlings TK; Fehlings MG
    Eur J Neurosci; 2009 Jan; 29(1):114-31. PubMed ID: 19120440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calpain inhibitor AK 295 inhibits calpain-induced apoptosis and improves neurologic function after traumatic spinal cord injury in rats.
    Colak A; Kaya M; Karaoğlan A; Sağmanligil A; Akdemir O; Sahan E; Celik O
    Neurocirugia (Astur); 2009 Jun; 20(3):245-54. PubMed ID: 19575128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular and apoptotic changes in the placode of myelomeningocele mice during the final stages of in utero development.
    Reis JL; Correia-Pinto J; Monteiro MP; Costa M; Hutchins GM
    J Neurosurg Pediatr; 2008 Aug; 2(2):150-7. PubMed ID: 18671624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular response after crush injury in adult zebrafish spinal cord.
    Hui SP; Dutta A; Ghosh S
    Dev Dyn; 2010 Nov; 239(11):2962-79. PubMed ID: 20931657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of embryonic chick spinal cord into transection adult chicken spinal cords: a useful model for transplantation research.
    Grady MS; Steward O; Jane JA
    J Neurosci Res; 1985; 14(4):403-14. PubMed ID: 4078939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stem cell factor prevents neuronal cell apoptosis after acute spinal cord injury.
    Yamasaki K; Setoguchi T; Takenouchi T; Yone K; Komiya S
    Spine (Phila Pa 1976); 2009 Feb; 34(4):323-7. PubMed ID: 19182706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury.
    Nomura H; Baladie B; Katayama Y; Morshead CM; Shoichet MS; Tator CH
    Neurosurgery; 2008 Jul; 63(1):127-41; discussion 141-3. PubMed ID: 18728578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.