BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16289582)

  • 21. Transplantation of preconditioned Schwann cells following hemisection spinal cord injury.
    Dinh P; Bhatia N; Rasouli A; Suryadevara S; Cahill K; Gupta R
    Spine (Phila Pa 1976); 2007 Apr; 32(9):943-9. PubMed ID: 17450067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. X-ray exposure induces apoptosis of some proliferative epidermal cells following traumatic spinal cord injury in adult rats.
    Wang X; Sun Z; Wang J; Nan G; Ma Y; Wang S; Xia Y; Zhang Y
    Int J Neurosci; 2009; 119(1):141-54. PubMed ID: 19116837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Developmental aspects of regeneration of the spinal cord (observations on chick embryos)].
    Sedlácek J; Doskocil M
    Cesk Neurol Neurochir; 1989 Oct; 52(6):359-64. PubMed ID: 2635074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Apoptosis and caspase-12 expression in progressive compressive spinal cord injury: experiment with rats].
    Liang YJ; Sun SQ; Wang KJ; He GQ; Li MP; Huang BN; Yu WH; Yang M
    Zhonghua Yi Xue Za Zhi; 2007 Apr; 87(15):1063-5. PubMed ID: 17672973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tauroursodeoxycholic acid and secondary damage after spinal cord injury in rats.
    Colak A; Kelten B; Sağmanligil A; Akdemir O; Karaoğlan A; Sahan E; Celik O; Barut S
    J Clin Neurosci; 2008 Jun; 15(6):665-71. PubMed ID: 18343118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preventive effect of erythropoietin on spinal cord cell apoptosis following acute traumatic injury in rats.
    Arishima Y; Setoguchi T; Yamaura I; Yone K; Komiya S
    Spine (Phila Pa 1976); 2006 Oct; 31(21):2432-8. PubMed ID: 17023852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury.
    Kitamura K; Iwanami A; Nakamura M; Yamane J; Watanabe K; Suzuki Y; Miyazawa D; Shibata S; Funakoshi H; Miyatake S; Coffin RS; Nakamura T; Toyama Y; Okano H
    J Neurosci Res; 2007 Aug; 85(11):2332-42. PubMed ID: 17549731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of endogenous glutathione in the secondary damage in experimental spinal cord injury in mice.
    Genovese T; Mazzon E; Esposito E; Muià C; Di Paola R; Di Bella P; Bramanti P; Cuzzocrea S
    Neurosci Lett; 2007 Aug; 423(1):41-6. PubMed ID: 17669594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Strategies to repair lost sensory connections to the spinal cord].
    Kozlova EN
    Mol Biol (Mosk); 2008; 42(5):820-9. PubMed ID: 18988531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activated spinal cord ependymal stem cells rescue neurological function.
    Moreno-Manzano V; Rodríguez-Jiménez FJ; García-Roselló M; Laínez S; Erceg S; Calvo MT; Ronaghi M; Lloret M; Planells-Cases R; Sánchez-Puelles JM; Stojkovic M
    Stem Cells; 2009 Mar; 27(3):733-43. PubMed ID: 19259940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycyrrhizin reduces secondary inflammatory process after spinal cord compression injury in mice.
    Genovese T; Menegazzi M; Mazzon E; Crisafulli C; Di Paola R; Dal Bosco M; Zou Z; Suzuki H; Cuzzocrea S
    Shock; 2009 Apr; 31(4):367-75. PubMed ID: 18665052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vascular events after spinal cord injury: contribution to secondary pathogenesis.
    Mautes AE; Weinzierl MR; Donovan F; Noble LJ
    Phys Ther; 2000 Jul; 80(7):673-87. PubMed ID: 10869130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced regeneration in spinal cord injury by concomitant treatment with granulocyte colony-stimulating factor and neuronal stem cells.
    Pan HC; Cheng FC; Lai SZ; Yang DY; Wang YC; Lee MS
    J Clin Neurosci; 2008 Jun; 15(6):656-64. PubMed ID: 18406145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cotransplantation of mouse embryonic stem cells and bone marrow stromal cells following spinal cord injury suppresses tumor development.
    Matsuda R; Yoshikawa M; Kimura H; Ouji Y; Nakase H; Nishimura F; Nonaka J; Toriumi H; Yamada S; Nishiofuku M; Moriya K; Ishizaka S; Nakamura M; Sakaki T
    Cell Transplant; 2009; 18(1):39-54. PubMed ID: 19476208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human neural precursor cells continue to proliferate and exhibit low cell death after transplantation to the injured rat spinal cord.
    Emgård M; Holmberg L; Samuelsson EB; Bahr BA; Falci S; Seiger A; Sundström E
    Brain Res; 2009 Jun; 1278():15-26. PubMed ID: 19376093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temporal and spatial profiles of cell loss after spinal cord injury: Reduction by a metalloporphyrin.
    Ling X; Liu D
    J Neurosci Res; 2007 Aug; 85(10):2175-85. PubMed ID: 17551979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of hemorrhage following spinal-cord injury.
    Losey P; Young C; Krimholtz E; Bordet R; Anthony DC
    Brain Res; 2014 Jun; 1569():9-18. PubMed ID: 24792308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chronological appearance of spontaneous and induced apoptosis during preimplantation development of rabbit and mouse embryos.
    Fabian D; Makarevich AV; Chrenek P; Bukovská A; Koppel J
    Theriogenology; 2007 Dec; 68(9):1271-81. PubMed ID: 17915306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calcitonin gene-related peptide dynamics in rat dorsal root ganglia and spinal cord following different sciatic nerve injuries.
    Zheng LF; Wang R; Xu YZ; Yi XN; Zhang JW; Zeng ZC
    Brain Res; 2008 Jan; 1187():20-32. PubMed ID: 18035338
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transplantation of mesenchymal stem cells enhances axonal outgrowth and cell survival in an organotypic spinal cord slice culture.
    Cho JS; Park HW; Park SK; Roh S; Kang SK; Paik KS; Chang MS
    Neurosci Lett; 2009 Apr; 454(1):43-8. PubMed ID: 19429051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.