BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16289705)

  • 1. An efficient mammalian cell-free translation system supplemented with translation factors.
    Mikami S; Masutani M; Sonenberg N; Yokoyama S; Imataka H
    Protein Expr Purif; 2006 Apr; 46(2):348-57. PubMed ID: 16289705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cleavage of p220 by purified poliovirus 2A(pro) in cell-free systems: effects on translation of capped and uncapped mRNAs.
    Novoa I; Martínez-Abarca F; Fortes P; Ortín J; Carrasco L
    Biochemistry; 1997 Jun; 36(25):7802-9. PubMed ID: 9201923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes.
    Miyakawa S; Oguro A; Ohtsu T; Imataka H; Sonenberg N; Nakamura Y
    RNA; 2006 Oct; 12(10):1825-34. PubMed ID: 16940549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient system for cap- and poly(A)-dependent translation in vitro.
    Svitkin YV; Sonenberg N
    Methods Mol Biol; 2004; 257():155-70. PubMed ID: 14770004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human cell-derived in vitro coupled transcription/translation system optimized for production of recombinant proteins.
    Mikami S; Kobayashi T; Masutani M; Yokoyama S; Imataka H
    Protein Expr Purif; 2008 Dec; 62(2):190-8. PubMed ID: 18814849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes.
    Susor A; Jelínková L; Karabínová P; Torner H; Tomek W; Kovárová H; Kubelka M
    Mol Reprod Dev; 2008 Dec; 75(12):1716-25. PubMed ID: 18386287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational control of eukaryotic gene expression.
    Van Der Kelen K; Beyaert R; Inzé D; De Veylder L
    Crit Rev Biochem Mol Biol; 2009; 44(4):143-68. PubMed ID: 19604130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Efficient cap-dependent in vitro and in vivo translation of mammalian mRNAs with long and highly structured 5'-untranslated regions].
    Dmitriev SE; Andreev DE; Ad'ianova ZV; Terenin IM; Shatskiĭ IN
    Mol Biol (Mosk); 2009; 43(1):119-25. PubMed ID: 19334534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A technique to increase protein yield in a rabbit reticulocyte lysate translation system.
    Anastasina M; Terenin I; Butcher SJ; Kainov DE
    Biotechniques; 2014 Jan; 56(1):36-9. PubMed ID: 24447137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function.
    Humphreys DT; Westman BJ; Martin DI; Preiss T
    Proc Natl Acad Sci U S A; 2005 Nov; 102(47):16961-6. PubMed ID: 16287976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-free protein synthesis systems with extracts from cultured human cells.
    Mikami S; Kobayashi T; Imataka H
    Methods Mol Biol; 2010; 607():43-52. PubMed ID: 20204847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of human malaria parasite Plasmodium falciparum eIF4E homologue and mRNA 5' cap status.
    Shaw PJ; Ponmee N; Karoonuthaisiri N; Kamchonwongpaisan S; Yuthavong Y
    Mol Biochem Parasitol; 2007 Oct; 155(2):146-55. PubMed ID: 17692399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Translational control by the poly(A) binding protein: a check for mRNA integrity].
    Svitkin YV; Sonenberg N
    Mol Biol (Mosk); 2006; 40(4):684-93. PubMed ID: 16913227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A poly(A) tail-responsive in vitro system for cap- or IRES-driven translation from HeLa cells.
    Thoma C; Ostareck-Lederer A; Hentze MW
    Methods Mol Biol; 2004; 257():171-80. PubMed ID: 14770005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybridoma-based in vitro translation system that efficiently synthesizes glycoproteins.
    Mikami S; Kobayashi T; Yokoyama S; Imataka H
    J Biotechnol; 2006 Dec; 127(1):65-78. PubMed ID: 16889861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eukaryotic translation initiation machinery can operate in a bacterial-like mode without eIF2.
    Terenin IM; Dmitriev SE; Andreev DE; Shatsky IN
    Nat Struct Mol Biol; 2008 Aug; 15(8):836-41. PubMed ID: 18604219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Was the initiation of translation in early eukaryotes IRES-driven?
    Hernández G
    Trends Biochem Sci; 2008 Feb; 33(2):58-64. PubMed ID: 18242094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of mammalian translation initiation by volatile anesthetics.
    Palmer LK; Rannels SL; Kimball SR; Jefferson LS; Keil RL
    Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1267-75. PubMed ID: 16434554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translation of Sindbis virus 26S mRNA does not require intact eukariotic initiation factor 4G.
    Castelló A; Sanz MA; Molina S; Carrasco L
    J Mol Biol; 2006 Feb; 355(5):942-56. PubMed ID: 16343528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectopic expression of eIF4E-transporter triggers the movement of eIF4E into P-bodies, inhibiting steady-state translation but not the pioneer round of translation.
    Lee HC; Cho H; Kim YK
    Biochem Biophys Res Commun; 2008 May; 369(4):1160-5. PubMed ID: 18343217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.