BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 16289778)

  • 1. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production.
    Bro C; Regenberg B; Förster J; Nielsen J
    Metab Eng; 2006 Mar; 8(2):102-11. PubMed ID: 16289778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.
    Guo ZP; Zhang L; Ding ZY; Shi GY
    Metab Eng; 2011 Jan; 13(1):49-59. PubMed ID: 21126600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae.
    Wang Y; Shi WL; Liu XY; Shen Y; Bao XM; Bai FW; Qu YB
    Biotechnol Lett; 2004 Jun; 26(11):885-90. PubMed ID: 15269535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae.
    Zhang L; Tang Y; Guo ZP; Ding ZY; Shi GY
    Biotechnol Lett; 2011 Jul; 33(7):1375-80. PubMed ID: 21400237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast.
    Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY
    J Ind Microbiol Biotechnol; 2011 Aug; 38(8):935-43. PubMed ID: 20824484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae.
    Jin YS; Jeffries TW
    Metab Eng; 2004 Jul; 6(3):229-38. PubMed ID: 15256213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component.
    van Maris AJ; Winkler AA; Kuyper M; de Laat WT; van Dijken JP; Pronk JT
    Adv Biochem Eng Biotechnol; 2007; 108():179-204. PubMed ID: 17846724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae.
    Kim JW; Chin YW; Park YC; Seo JH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):49-54. PubMed ID: 21909679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae.
    Pagliardini J; Hubmann G; Alfenore S; Nevoigt E; Bideaux C; Guillouet SE
    Microb Cell Fact; 2013 Mar; 12():29. PubMed ID: 23537043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations.
    Guadalupe-Medina V; Metz B; Oud B; van Der Graaf CM; Mans R; Pronk JT; van Maris AJ
    Microb Biotechnol; 2014 Jan; 7(1):44-53. PubMed ID: 24004455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains.
    Grotkjaer T; Christakopoulos P; Nielsen J; Olsson L
    Metab Eng; 2005; 7(5-6):437-44. PubMed ID: 16140032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS
    Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture.
    Hjersted JL; Henson MA; Mahadevan R
    Biotechnol Bioeng; 2007 Aug; 97(5):1190-204. PubMed ID: 17243146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae.
    Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity.
    Matsushika A; Sawayama S
    J Biosci Bioeng; 2008 Sep; 106(3):306-9. PubMed ID: 18930011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.
    Matsushika A; Sawayama S
    Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production.
    Geertman JM; van Maris AJ; van Dijken JP; Pronk JT
    Metab Eng; 2006 Nov; 8(6):532-42. PubMed ID: 16891140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.