These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Guo ZP; Zhang L; Ding ZY; Shi GY Metab Eng; 2011 Jan; 13(1):49-59. PubMed ID: 21126600 [TBL] [Abstract][Full Text] [Related]
3. Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Wang Y; Shi WL; Liu XY; Shen Y; Bao XM; Bai FW; Qu YB Biotechnol Lett; 2004 Jun; 26(11):885-90. PubMed ID: 15269535 [TBL] [Abstract][Full Text] [Related]
4. Improving the ethanol yield by reducing glycerol formation using cofactor regulation in Saccharomyces cerevisiae. Zhang L; Tang Y; Guo ZP; Ding ZY; Shi GY Biotechnol Lett; 2011 Jul; 33(7):1375-80. PubMed ID: 21400237 [TBL] [Abstract][Full Text] [Related]
5. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC; Turner TL; Jin YS J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [TBL] [Abstract][Full Text] [Related]
6. Improving ethanol productivity by modification of glycolytic redox factor generation in glycerol-3-phosphate dehydrogenase mutants of an industrial ethanol yeast. Guo ZP; Zhang L; Ding ZY; Wang ZX; Shi GY J Ind Microbiol Biotechnol; 2011 Aug; 38(8):935-43. PubMed ID: 20824484 [TBL] [Abstract][Full Text] [Related]
7. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Jin YS; Jeffries TW Metab Eng; 2004 Jul; 6(3):229-38. PubMed ID: 15256213 [TBL] [Abstract][Full Text] [Related]
8. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. van Maris AJ; Winkler AA; Kuyper M; de Laat WT; van Dijken JP; Pronk JT Adv Biochem Eng Biotechnol; 2007; 108():179-204. PubMed ID: 17846724 [TBL] [Abstract][Full Text] [Related]
9. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae. Kim JW; Chin YW; Park YC; Seo JH Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):49-54. PubMed ID: 21909679 [TBL] [Abstract][Full Text] [Related]
10. The metabolic costs of improving ethanol yield by reducing glycerol formation capacity under anaerobic conditions in Saccharomyces cerevisiae. Pagliardini J; Hubmann G; Alfenore S; Nevoigt E; Bideaux C; Guillouet SE Microb Cell Fact; 2013 Mar; 12():29. PubMed ID: 23537043 [TBL] [Abstract][Full Text] [Related]
11. Evolutionary engineering of a glycerol-3-phosphate dehydrogenase-negative, acetate-reducing Saccharomyces cerevisiae strain enables anaerobic growth at high glucose concentrations. Guadalupe-Medina V; Metz B; Oud B; van Der Graaf CM; Mans R; Pronk JT; van Maris AJ Microb Biotechnol; 2014 Jan; 7(1):44-53. PubMed ID: 24004455 [TBL] [Abstract][Full Text] [Related]
13. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae. Lee SH; Kodaki T; Park YC; Seo JH J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927 [TBL] [Abstract][Full Text] [Related]
14. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast. Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865 [TBL] [Abstract][Full Text] [Related]
15. Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Hjersted JL; Henson MA; Mahadevan R Biotechnol Bioeng; 2007 Aug; 97(5):1190-204. PubMed ID: 17243146 [TBL] [Abstract][Full Text] [Related]
16. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
17. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae. Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014 [TBL] [Abstract][Full Text] [Related]
18. Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. Matsushika A; Sawayama S J Biosci Bioeng; 2008 Sep; 106(3):306-9. PubMed ID: 18930011 [TBL] [Abstract][Full Text] [Related]
19. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
20. Physiological and genetic engineering of cytosolic redox metabolism in Saccharomyces cerevisiae for improved glycerol production. Geertman JM; van Maris AJ; van Dijken JP; Pronk JT Metab Eng; 2006 Nov; 8(6):532-42. PubMed ID: 16891140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]