These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 16290167)
1. Ionization state of pyridoxal 5'-phosphate in D-serine dehydratase, dialkylglycine decarboxylase and tyrosine phenol-lyase and the influence of monovalent cations as inferred by 31P NMR spectroscopy. Schnackerz KD; Keller J; Phillips RS; Toney MD Biochim Biophys Acta; 2006 Feb; 1764(2):230-8. PubMed ID: 16290167 [TBL] [Abstract][Full Text] [Related]
2. 13C NMR spectroscopy of labeled pyridoxal 5'-phosphate. Model studies, D-serine dehydratase, and L-glutamate decarboxylase. O'Leary MH; Payne JR J Biol Chem; 1976 Apr; 251(8):2248-54. PubMed ID: 1262325 [TBL] [Abstract][Full Text] [Related]
3. Plasticity of the tryptophan synthase active site probed by 31P NMR spectroscopy. Schnackerz KD; Mozzarelli A J Biol Chem; 1998 Dec; 273(50):33247-53. PubMed ID: 9837895 [TBL] [Abstract][Full Text] [Related]
4. Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase. Toney MD; Hohenester E; Keller JW; Jansonius JN J Mol Biol; 1995 Jan; 245(2):151-79. PubMed ID: 7799433 [TBL] [Abstract][Full Text] [Related]
5. Role of Arg-277 in the binding of pyridoxal 5'-phosphate to Trypanosoma brucei ornithine decarboxylase. Osterman AL; Brooks HB; Rizo J; Phillips MA Biochemistry; 1997 Apr; 36(15):4558-67. PubMed ID: 9109665 [TBL] [Abstract][Full Text] [Related]
6. Phosphorus-31 nuclear magnetic resonance study of D-serine dehydratase: pryridoxal phosphate binding site. Schnackerz KD; Feldmann K; Hull WE Biochemistry; 1979 Apr; 18(8):1536-9. PubMed ID: 34429 [TBL] [Abstract][Full Text] [Related]
7. Coexisting kinetically distinguishable forms of dialkylglycine decarboxylase engendered by alkali metal ions. Zhou X; Kay S; Toney MD Biochemistry; 1998 Apr; 37(16):5761-9. PubMed ID: 9548963 [TBL] [Abstract][Full Text] [Related]
8. Structures of apo- and holo-tyrosine phenol-lyase reveal a catalytically critical closed conformation and suggest a mechanism for activation by K+ ions. Milić D; Matković-Calogović D; Demidkina TV; Kulikova VV; Sinitzina NI; Antson AA Biochemistry; 2006 Jun; 45(24):7544-52. PubMed ID: 16768450 [TBL] [Abstract][Full Text] [Related]
9. Reaction mechanism of Zn2+-dependent d-serine dehydratase: role of a conserved tyrosine residue interacting with pyridine ring nitrogen of pyridoxal 5'-phosphate. Ito T; Matsuoka M; Koga K; Hemmi H; Yoshimura T J Biochem; 2014 Sep; 156(3):173-80. PubMed ID: 24881047 [TBL] [Abstract][Full Text] [Related]
10. pH studies on the mechanism of the pyridoxal phosphate-dependent dialkylglycine decarboxylase. Zhou X; Toney MD Biochemistry; 1999 Jan; 38(1):311-20. PubMed ID: 9890912 [TBL] [Abstract][Full Text] [Related]
12. (31)P NMR spectroscopy senses the microenvironment of the 5'-phosphate group of enzyme-bound pyridoxal 5'-phosphate. Schnackerz KD; Andi B; Cook PF Biochim Biophys Acta; 2011 Nov; 1814(11):1447-58. PubMed ID: 21354475 [TBL] [Abstract][Full Text] [Related]
13. Role of lysine-256 in Citrobacter freundii tyrosine phenol-lyase in monovalent cation activation. Phillips RS; Chen HY; Shim D; Lima S; Tavakoli K; Sundararaju B Biochemistry; 2004 Nov; 43(45):14412-9. PubMed ID: 15533046 [TBL] [Abstract][Full Text] [Related]
14. Effect of potassium ion on the phosphorus-31 nuclear magnetic resonance spectrum of the pyridoxal 5'-phosphate cofactor of Escherichia coli D-serine dehydratase. Kojiro CL; Marceau M; Shafer JA Arch Biochem Biophys; 1989 Jan; 268(1):67-73. PubMed ID: 2643389 [TBL] [Abstract][Full Text] [Related]
15. Resolution of pyridoxal 5'-phosphate from O-acetylserine sulfhydrylase from Salmonella typhimurium and reconstitution of apoenzyme with cofactor and cofactor analogues as a probe of the cofactor binding site. Schnackerz KD; Cook PF Arch Biochem Biophys; 1995 Dec; 324(1):71-7. PubMed ID: 7503562 [TBL] [Abstract][Full Text] [Related]
16. Stereospecificity of isotopic exchange of C-α-protons of glycine catalyzed by three PLP-dependent lyases: the unusual case of tyrosine phenol-lyase. Koulikova VV; Zakomirdina LN; Gogoleva OI; Tsvetikova MA; Morozova EA; Komissarov VV; Tkachev YV; Timofeev VP; Demidkina TV; Faleev NG Amino Acids; 2011 Nov; 41(5):1247-56. PubMed ID: 21104284 [TBL] [Abstract][Full Text] [Related]
17. Disruption of active site interactions with pyridoxal 5'-phosphate and substrates by conservative replacements in the glycine-rich loop of Escherichia coli D-serine dehydratase. Marceau M; Lewis SD; Kojiro CL; Mountjoy K; Shafer JA J Biol Chem; 1990 Nov; 265(33):20421-9. PubMed ID: 2243098 [TBL] [Abstract][Full Text] [Related]
18. An alkali metal ion size-dependent switch in the active site structure of dialkylglycine decarboxylase. Hohenester E; Keller JW; Jansonius JN Biochemistry; 1994 Nov; 33(46):13561-70. PubMed ID: 7947767 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus 31 nuclear magnetic resonance study of tryptophanase. Pyridoxal phosphate-binding site. Schnackerz KD; Snell EE J Biol Chem; 1983 Apr; 258(8):4839-41. PubMed ID: 6339506 [TBL] [Abstract][Full Text] [Related]
20. Kinetic and thermodynamic analysis of the interaction of cations with dialkylglycine decarboxylase. Liu W; Toney MD Biochemistry; 2004 May; 43(17):4998-5010. PubMed ID: 15109259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]