These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 16290201)
1. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods. Yap CW; Li ZR; Chen YZ J Mol Graph Model; 2006 Mar; 24(5):383-95. PubMed ID: 16290201 [TBL] [Abstract][Full Text] [Related]
2. Three new consensus QSAR models for the prediction of Ames genotoxicity. Votano JR; Parham M; Hall LH; Kier LB; Oloff S; Tropsha A; Xie Q; Tong W Mutagenesis; 2004 Sep; 19(5):365-77. PubMed ID: 15388809 [TBL] [Abstract][Full Text] [Related]
3. Quantitative Structure-Pharmacokinetic Relationships for drug distribution properties by using general regression neural network. Yap CW; Chen YZ J Pharm Sci; 2005 Jan; 94(1):153-68. PubMed ID: 15761939 [TBL] [Abstract][Full Text] [Related]
4. Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Xue Y; Li H; Ung CY; Yap CW; Chen YZ Chem Res Toxicol; 2006 Aug; 19(8):1030-9. PubMed ID: 16918241 [TBL] [Abstract][Full Text] [Related]
5. Prediction of estrogen receptor agonists and characterization of associated molecular descriptors by statistical learning methods. Li H; Ung CY; Yap CW; Xue Y; Li ZR; Chen YZ J Mol Graph Model; 2006 Nov; 25(3):313-23. PubMed ID: 16497524 [TBL] [Abstract][Full Text] [Related]
6. Prediction of antibacterial compounds by machine learning approaches. Yang XG; Chen D; Wang M; Xue Y; Chen YZ J Comput Chem; 2009 Jun; 30(8):1202-11. PubMed ID: 18988254 [TBL] [Abstract][Full Text] [Related]
7. Prediction of genotoxicity of chemical compounds by statistical learning methods. Li H; Ung CY; Yap CW; Xue Y; Li ZR; Cao ZW; Chen YZ Chem Res Toxicol; 2005 Jun; 18(6):1071-80. PubMed ID: 15962942 [TBL] [Abstract][Full Text] [Related]
8. Prediction of human pharmacokinetics--improving microsome-based predictions of hepatic metabolic clearance. Fagerholm U J Pharm Pharmacol; 2007 Oct; 59(10):1427-31. PubMed ID: 17910819 [TBL] [Abstract][Full Text] [Related]
9. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores. Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012 [TBL] [Abstract][Full Text] [Related]
10. Quantitative structure-activity relationship models of clinical pharmacokinetics: clearance and volume of distribution. Gombar VK; Hall SD J Chem Inf Model; 2013 Apr; 53(4):948-57. PubMed ID: 23451981 [TBL] [Abstract][Full Text] [Related]
11. QSAR modeling of human serum protein binding with several modeling techniques utilizing structure-information representation. Votano JR; Parham M; Hall LM; Hall LH; Kier LB; Oloff S; Tropsha A J Med Chem; 2006 Nov; 49(24):7169-81. PubMed ID: 17125269 [TBL] [Abstract][Full Text] [Related]
12. Prediction of aqueous solubility based on large datasets using several QSPR models utilizing topological structure representation. Votano JR; Parham M; Hall LH; Kier LB; Hall LM Chem Biodivers; 2004 Nov; 1(11):1829-41. PubMed ID: 17191819 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional quantitative structure activity relationship computational approaches for prediction of human in vitro intrinsic clearance. Ekins S; Obach RS J Pharmacol Exp Ther; 2000 Nov; 295(2):463-73. PubMed ID: 11046077 [TBL] [Abstract][Full Text] [Related]
14. QSPR models for the prediction of apparent volume of distribution. Ghafourian T; Barzegar-Jalali M; Dastmalchi S; Khavari-Khorasani T; Hakimiha N; Nokhodchi A Int J Pharm; 2006 Aug; 319(1-2):82-97. PubMed ID: 16698204 [TBL] [Abstract][Full Text] [Related]
15. Prediction of P-glycoprotein substrates by a support vector machine approach. Xue Y; Yap CW; Sun LZ; Cao ZW; Wang JF; Chen YZ J Chem Inf Comput Sci; 2004; 44(4):1497-505. PubMed ID: 15272858 [TBL] [Abstract][Full Text] [Related]
16. Effect of molecular descriptor feature selection in support vector machine classification of pharmacokinetic and toxicological properties of chemical agents. Xue Y; Li ZR; Yap CW; Sun LZ; Chen X; Chen YZ J Chem Inf Comput Sci; 2004; 44(5):1630-8. PubMed ID: 15446820 [TBL] [Abstract][Full Text] [Related]
17. Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures. Niwa T J Chem Inf Comput Sci; 2003; 43(1):113-9. PubMed ID: 12546543 [TBL] [Abstract][Full Text] [Related]
18. First-principle, structure-based prediction of hepatic metabolic clearance values in human. Li H; Sun J; Sui X; Liu J; Yan Z; Liu X; Sun Y; He Z Eur J Med Chem; 2009 Apr; 44(4):1600-6. PubMed ID: 18768239 [TBL] [Abstract][Full Text] [Related]
19. Reevaluation of a quantitative structure pharmacokinetic model for biliary excretion in rats. Gandhi YA; Morris ME Drug Metab Dispos; 2012 Jul; 40(7):1259-62. PubMed ID: 22522747 [TBL] [Abstract][Full Text] [Related]
20. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Nandi S; Vracko M; Bagchi MC Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]