These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16290394)

  • 1. Ink-bottle effect in mercury intrusion porosimetry of cement-based materials.
    Moro F; Böhni H
    J Colloid Interface Sci; 2002 Feb; 246(1):135-49. PubMed ID: 16290394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of cement-bonded materials by multi-cycle mercury intrusion and nitrogen sorption.
    Kaufmann J; Loser R; Leemann A
    J Colloid Interface Sci; 2009 Aug; 336(2):730-7. PubMed ID: 19505695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ink-bottle Effect and Pore Size Distribution of Cementitious Materials Identified by Pressurization⁻Depressurization Cycling Mercury Intrusion Porosimetry.
    Zhang Y; Yang B; Yang Z; Ye G
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31060298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials.
    Abell AB; Willis KL; Lange DA
    J Colloid Interface Sci; 1999 Mar; 211(1):39-44. PubMed ID: 9929433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury porosimetry in mesoporous glasses: a comparison of experiments with results from a molecular model.
    Porcheron F; Thommes M; Ahmad R; Monson PA
    Langmuir; 2007 Mar; 23(6):3372-80. PubMed ID: 17305379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of mercury contact angle, surface tension, and retraction mechanism on the interpretation of mercury porosimetry data.
    Rigby SP; Edler KJ
    J Colloid Interface Sci; 2002 Jun; 250(1):175-90. PubMed ID: 16290649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury Porosimetry: Contact Angle Hysteresis of Materials with Controlled Pore Structure.
    Salmas C; Androutsopoulos G
    J Colloid Interface Sci; 2001 Jul; 239(1):178-189. PubMed ID: 11397062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic aspects of mercury porosimetry: a lattice model study.
    Porcheron F; Monson PA
    Langmuir; 2005 Mar; 21(7):3179-86. PubMed ID: 15780002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the characterization of porosity in PTFE-carbon composite implant materials by mercury porosimetry.
    Dehl RE
    J Biomed Mater Res; 1982 Sep; 16(5):715-9. PubMed ID: 7130222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Textural characterization of native and n-alky-bonded silica monoliths by mercury intrusion/extrusion, inverse size exclusion chromatography and nitrogen adsorption.
    Thommes M; Skudas R; Unger KK; Lubda D
    J Chromatogr A; 2008 May; 1191(1-2):57-66. PubMed ID: 18423477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between the Size of the Samples and the Interpretation of the Mercury Intrusion Results of an Artificial Sandstone.
    Dong H; Zhang H; Zuo Y; Gao P; Ye G
    Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29382067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography.
    Holzer L; Indutnyi F; Gasser PH; Münch B; Wegmann M
    J Microsc; 2004 Oct; 216(Pt 1):84-95. PubMed ID: 15369488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury cyclic porosimetry: Measuring pore-size distributions corrected for both pore-space accessivity and contact-angle hysteresis.
    Gu Z; Goulet R; Levitz P; Ihiawakrim D; Ersen O; Bazant MZ
    J Colloid Interface Sci; 2021 Oct; 599():255-261. PubMed ID: 33945972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling liquid porosimetry in modeled and imaged 3-D fibrous microstructures.
    Jaganathan S; Vahedi Tafreshi H; Pourdeyhimi B
    J Colloid Interface Sci; 2008 Oct; 326(1):166-75. PubMed ID: 18684465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids.
    Bafarawa B; Nepryahin A; Ji L; Holt EM; Wang J; Rigby SP
    J Colloid Interface Sci; 2014 Jul; 426():72-9. PubMed ID: 24863767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porosity of different dental luting cements.
    Milutinović-Nikolić AD; Medić VB; Vuković ZM
    Dent Mater; 2007 Jun; 23(6):674-8. PubMed ID: 16860859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of mercury porosimetry for the evaluation of pore shape and intrusion-extrusion hysteresis.
    Shively ML
    J Pharm Sci; 1991 Apr; 80(4):376-9. PubMed ID: 1650824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore Structure Damages in Cement-Based Materials by Mercury Intrusion: A Non-Destructive Assessment by X-Ray Computed Tomography.
    Wang X; Peng Y; Wang J; Zeng Q
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31295836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas.
    Thommes M; Smarsly B; Groenewolt M; Ravikovitch PI; Neimark AV
    Langmuir; 2006 Jan; 22(2):756-64. PubMed ID: 16401128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AFM-porosimetry: density and pore volume measurements of particulate materials.
    Sörensen MH; Valle-Delgado JJ; Corkery RW; Rutland MW; Alberius PC
    Langmuir; 2008 Jun; 24(13):7024-30. PubMed ID: 18503284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.