These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 1629044)

  • 21. [Functional and morphological changes of the cochlea in guinea pigs during anoxia].
    Ding DL
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1993; 28(5):265-7, 313. PubMed ID: 8192926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effects of adenosine on cochlear function in guinea pigs].
    Zhu Z; Dong WJ; Chen JS
    Sheng Li Xue Bao; 1996 Jun; 48(3):298-302. PubMed ID: 9389189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure.
    Scheibe F; Haupt H; Ludwig C
    Eur Arch Otorhinolaryngol; 1993; 250(5):281-5. PubMed ID: 8217130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noise-induced cochlear hypoxia is intensity dependent, correlates with hearing loss and precedes reduction of cochlear blood flow.
    Lamm K; Arnold W
    Audiol Neurootol; 1996; 1(3):148-60. PubMed ID: 9390798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of K(+)-channel blockers on cochlear potentials in the guinea pig.
    Wang J; Li QH; Dong WJ; Chen JS
    Hear Res; 1993 Aug; 68(2):152-8. PubMed ID: 8407601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.
    Reiss LA; Stark G; Nguyen-Huynh AT; Spear KA; Zhang H; Tanaka C; Li H
    Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of tone exposure on the inner ear functions in the guinea pig: impact tone vs. steady state tone.
    Inada N; Hotta S; Itoh T; Yamamura K
    Tohoku J Exp Med; 1999 Jun; 188(2):161-75. PubMed ID: 10526878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea.
    Hirose K; Liberman MC
    J Assoc Res Otolaryngol; 2003 Sep; 4(3):339-52. PubMed ID: 14690052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effects of increasing perilymph calcium levels on various cochlear potentials].
    Hu L; Dong W; Chen J
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 1997 May; 13(2):128-30. PubMed ID: 10074232
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effects of lowering perilymph calcium concentration on various cochlear potentials].
    Wang J; Dong WJ; Chen JS; Liu JL
    Sheng Li Xue Bao; 1994 Aug; 46(4):327-32. PubMed ID: 7973823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure.
    Scheibe F; Haupt H; Ludwig C
    Hear Res; 1992 Nov; 63(1-2):19-25. PubMed ID: 1464569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of perilymphatic air perfusion on cochlear potentials.
    Kobayashi T; Itoh Z; Sakurada T; Shiga N; Takasaka T
    Acta Otolaryngol; 1990; 110(3-4):209-16. PubMed ID: 2239209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of low-frequency ultrasound on the inner ear: an electrophysiological study using the guinea pig cochlea.
    Ishida A; Matsui T; Yamamura K
    Eur Arch Otorhinolaryngol; 1993; 250(1):22-6. PubMed ID: 8466746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissociation of the cochlear microphonics and endocochlear potential after injection of ethacrynic acid.
    Komune S; Morimitsu T
    Arch Otorhinolaryngol; 1985; 241(2):149-56. PubMed ID: 3977766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Link between functional and morphological changes in the inner ear--functional changes produced by ototoxic agents and their interactions.
    Brown RD; Henley CM; Penny JE; Kupetz S
    Arch Toxicol Suppl; 1985; 8():240-50. PubMed ID: 3913403
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prestin gene expression in the rat cochlea following intense noise exposure.
    Chen GD
    Hear Res; 2006 Dec; 222(1-2):54-61. PubMed ID: 17005342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of adenylate cyclase stimulation on endocochlear potential in the guinea pig.
    Doi K; Mori N; Matsunaga T
    Eur Arch Otorhinolaryngol; 1990; 247(1):16-9. PubMed ID: 2310543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined effects of adrenalectomy and noise exposure on compound action potentials, endocochlear potentials and endolymphatic potassium concentrations.
    Ma YL; Gerhardt KJ; Curtis LM; Rybak LP; Whitworth C; Rarey KE
    Hear Res; 1995 Nov; 91(1-2):79-86. PubMed ID: 8647728
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of moderate cooling on gross cochlear potentials in the gerbil: basal and apical differences.
    Ohlemiller KK; Siegel JH
    Hear Res; 1992 Nov; 63(1-2):79-89. PubMed ID: 1464578
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects on cochlear microphonics in guinea pigs induced by prolonged exposure to low-frequency sound.
    Maehara N; Sadamoto T; Yamamura K
    Eur J Appl Physiol Occup Physiol; 1984; 52(3):305-9. PubMed ID: 6539683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.