These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 16290488)

  • 1. Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid-particle model.
    Dzwinel W; Yuen DA
    J Colloid Interface Sci; 2002 Mar; 247(2):463-80. PubMed ID: 16290488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model.
    Dzwinel W; Yuen DA; Boryczko K
    J Mol Model; 2002 Jan; 8(1):33-43. PubMed ID: 12111400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscale hydrodynamic modeling of a colloid in shear-thinning viscoelastic fluids under shear flow.
    Ji S; Jiang R; Winkler RG; Gompper G
    J Chem Phys; 2011 Oct; 135(13):134116. PubMed ID: 21992291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent mediated interactions between model colloids and interfaces: a microscopic approach.
    Hopkins P; Archer AJ; Evans R
    J Chem Phys; 2009 Sep; 131(12):124704. PubMed ID: 19791909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Two-Level, Discrete-Particle Approach for Simulating Ordered Colloidal Structures.
    Dzwinel W; Yuen DA
    J Colloid Interface Sci; 2000 May; 225(1):179-190. PubMed ID: 10767158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of magnetic interactions between clusters on particle orientational characteristics and viscosity of a colloidal dispersion composed of ferromagnetic spherocylinder particles: analysis by means of mean field approximation for a simple shear flow.
    Satoh A
    J Colloid Interface Sci; 2005 Sep; 289(1):276-85. PubMed ID: 16009234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Turbulent hydrodynamic stress induced dispersion and fragmentation of nanoscale agglomerates.
    Wengeler R; Nirschl H
    J Colloid Interface Sci; 2007 Feb; 306(2):262-73. PubMed ID: 17109876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore.
    Ramachandran V; Venkatesan R; Tryggvason G; Scott Fogler H
    J Colloid Interface Sci; 2000 Sep; 229(2):311-322. PubMed ID: 10985810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of binary colloidal structures assembled via specific biological cross-linking.
    Hiddessen AL; Weitz DA; Hammer DA
    Langmuir; 2004 Aug; 20(16):6788-95. PubMed ID: 15274586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology, microstructure and migration in brownian colloidal suspensions.
    Pan W; Caswell B; Karniadakis GE
    Langmuir; 2010 Jan; 26(1):133-42. PubMed ID: 20038167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems.
    Chatterji A; Horbach J
    J Chem Phys; 2005 May; 122(18):184903. PubMed ID: 15918761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological properties and particle behaviors of a nondilute colloidal dispersion composed of ferromagnetic spherocylinder particles subjected to a simple shear flow: analysis by means of mean-field approximation for the two typical external magnetic field directions.
    Watanabe T; Aoshima M; Satoh A
    J Colloid Interface Sci; 2006 Oct; 302(1):347-55. PubMed ID: 16814313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional Monte Carlo simulations of a polydisperse colloidal dispersion composed of ferromagnetic particles for the case of no external magnetic field.
    Aoshima M; Satoh A
    J Colloid Interface Sci; 2004 Dec; 280(1):83-90. PubMed ID: 15476777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakage rate of colloidal aggregates in shear flow through stokesian dynamics.
    Harshe YM; Lattuada M
    Langmuir; 2012 Jan; 28(1):283-92. PubMed ID: 22122803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological properties and particle behaviors of a non-dilute colloidal dispersion composed of ferromagnetic spherocylinder particles subjected to a simple shear flow (analysis by means of mean-field approximation).
    Satoh A
    J Colloid Interface Sci; 2003 Jun; 262(1):263-73. PubMed ID: 16256603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal attraction induced by a temperature gradient.
    Di Leonardo R; Ianni F; Ruocco G
    Langmuir; 2009 Apr; 25(8):4247-50. PubMed ID: 19265405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of particle paths passing through an ultrasonic standing wave.
    Townsend RJ; Hill M; Harris NR; White NM
    Ultrasonics; 2004 Apr; 42(1-9):319-24. PubMed ID: 15047305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Dimensional Simulation of the Breakup Process of Aggregates in Shear and Elongational Flows.
    Higashitani K; Iimura K
    J Colloid Interface Sci; 1998 Aug; 204(2):320-7. PubMed ID: 9698410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A penalty method to model particle interactions in DNA-laden flows.
    Trebotich D; Miller GH; Bybee MD
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3749-56. PubMed ID: 19051932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.