These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16290522)

  • 1. Controlled drug release from gels using lipophilic interactions of charged substances with surfactants and polymers.
    Paulsson M; Edsman K
    J Colloid Interface Sci; 2002 Apr; 248(1):194-200. PubMed ID: 16290522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled drug release from gels using surfactant aggregates. II. Vesicles formed from mixtures of amphiphilic drugs and oppositely charged surfactants.
    Paulsson M; Edsman K
    Pharm Res; 2001 Nov; 18(11):1586-92. PubMed ID: 11758767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled drug release from gels using surfactant aggregates: I. Effect of lipophilic interactions for a series of uncharged substances.
    Paulsson M; Edsman K
    J Pharm Sci; 2001 Sep; 90(9):1216-25. PubMed ID: 11745775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption kinetics of amphiphilic diblock copolymers: from kinetically frozen colloids to macrosurfactants.
    Theodoly O; Jacquin M; Muller P; Chhun S
    Langmuir; 2009 Jan; 25(2):781-93. PubMed ID: 19177645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catanionic mixtures involving a drug: a rather general concept that can be utilized for prolonged drug release from gels.
    Bramer T; Dew N; Edsman K
    J Pharm Sci; 2006 Apr; 95(4):769-80. PubMed ID: 16498573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid) in Simulated Intestinal Fluids.
    Knöös P; Svensson AV; Ulvenlund S; Wahlgren M
    PLoS One; 2015; 10(10):e0140709. PubMed ID: 26473964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible fluorescence quenching by micelle selective benzophenone-induced interactions between brij micelles and polyacrylic acids: implications for chemical sensors.
    Bandyopadhyay P; Ghosh AK
    J Phys Chem B; 2010 Sep; 114(35):11462-7. PubMed ID: 20715876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gel formation in systems composed of drug containing catanionic vesicles and oppositely charged hydrophobically modified polymer.
    Dew N; Edwards K; Edsman K
    Colloids Surf B Biointerfaces; 2009 May; 70(2):187-97. PubMed ID: 19167869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug release from a pH-sensitive multiblock co-polymer thermogel.
    Garripelli VK; Namgung R; Kim WJ; Jo S
    J Biomater Sci Polym Ed; 2012; 23(12):1505-19. PubMed ID: 21771392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pluronic-g-poly(acrylic acid) copolymers as novel excipients for site specific, sustained release tablets.
    Barreiro-Iglesias R; Bromberg L; Temchenko M; Hatton TA; Alvarez-Lorenzo C; Concheiro A
    Eur J Pharm Sci; 2005 Dec; 26(5):374-85. PubMed ID: 16165345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent hydrogels for the oral delivery of chemotherapeutics.
    Bromberg L
    Expert Opin Drug Deliv; 2005 Nov; 2(6):1003-13. PubMed ID: 16296805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catanionic aggregates formed from drugs and lauric or capric acids enable prolonged release from gels.
    Dew N; Bramer T; Edsman K
    J Colloid Interface Sci; 2008 Jul; 323(2):386-94. PubMed ID: 18479696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An examination of the rheological and mucoadhesive properties of poly(acrylic acid) organogels designed as platforms for local drug delivery to the oral cavity.
    Jones DS; Muldoon BC; Woolfson AD; Sanderson FD
    J Pharm Sci; 2007 Oct; 96(10):2632-46. PubMed ID: 17702045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gel formulation containing mixed surfactant and lipids associating with carboplatin.
    Woll KA; Schuchardt EJ; Willis CR; Ortengren CD; Hendricks N; Johnson M; Gaidamauskas E; Baruah B; Sostarecz AG; Worley DR; Osborne DW; Crans DC
    Chem Biodivers; 2011 Dec; 8(12):2195-210. PubMed ID: 22162158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of small quantities of surfactants as a way to improve the rheological and diffusional behavior of carbopol gels.
    Barreiro-Iglesias R; Alvarez-Lorenzo C; Concheiro A
    J Control Release; 2001 Nov; 77(1-2):59-75. PubMed ID: 11689260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained release of naltrexone from poly(n-isopropylacrylamide) microgels.
    Kjøniksen AL; Calejo MT; Zhu K; Cardoso AM; de Lima MC; Jurado AS; Nyström B; Sande SA
    J Pharm Sci; 2014 Jan; 103(1):227-34. PubMed ID: 24218151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regular and irregular deswelling of polyacrylate and hyaluronate gels induced by oppositely charged surfactants.
    Nilsson P; Hansson P
    J Colloid Interface Sci; 2008 Sep; 325(2):316-23. PubMed ID: 18565536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of hydrophilic and hydrophobic block length on the rheology of amphiphilic diblock Polystyrene-b-Poly(sodium methacrylate) copolymers prepared by ATRP.
    Raffa P; Stuart MC; Broekhuis AA; Picchioni F
    J Colloid Interface Sci; 2014 Aug; 428():152-61. PubMed ID: 24910048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation-responsive micelles based on a selenium-containing polymeric superamphiphile.
    Han P; Ma N; Ren H; Xu H; Li Z; Wang Z; Zhang X
    Langmuir; 2010 Sep; 26(18):14414-8. PubMed ID: 20722431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug release and washability of mucoadhesive gels based on sodium carboxymethylcellulose and polyacrylic acid.
    Rossi S; Bonferoni MC; Ferrari F; Caramella C
    Pharm Dev Technol; 1999 Jan; 4(1):55-63. PubMed ID: 10027213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.