BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16290566)

  • 1. Hybrid monte carlo method for simulation of two-component aerosol coagulation and phase segregation.
    Efendiev Y; Zachariah MR
    J Colloid Interface Sci; 2002 May; 249(1):30-43. PubMed ID: 16290566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The self-preserving size distribution theory. I. Effects of the Knudsen number on aerosol agglomerate growth.
    Dekkers PJ; Friedlander SK
    J Colloid Interface Sci; 2002 Apr; 248(2):295-305. PubMed ID: 16290534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo Simulation of Particle Aggregation and Simultaneous Restructuring.
    Tandon P; Rosner DE
    J Colloid Interface Sci; 1999 May; 213(2):273-286. PubMed ID: 10222067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregate size distribution evolution for Brownian coagulation-sensitivity to an improved rate constant.
    Zurita-Gotor M; Rosner DE
    J Colloid Interface Sci; 2004 Jun; 274(2):502-14. PubMed ID: 15144823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bivariate Extension of the Quadrature Method of Moments for Modeling Simultaneous Coagulation and Sintering of Particle Populations.
    Wright DL; McGraw R; Rosner DE
    J Colloid Interface Sci; 2001 Apr; 236(2):242-251. PubMed ID: 11401370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the definition of a Monte Carlo model for binary crystal growth.
    Los JH; van Enckevort WJ; Meekes H; Vlieg E
    J Phys Chem B; 2007 Feb; 111(4):782-91. PubMed ID: 17249822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of dose deposition in stereotactic synchrotron radiation therapy: a fast approach combining Monte Carlo and deterministic algorithms.
    Smekens F; Freud N; Létang JM; Adam JF; Ferrero C; Elleaume H; Bravin A; Estève F; Babot D
    Phys Med Biol; 2009 Aug; 54(15):4671-85. PubMed ID: 19590114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral diffusion of molecules in two-component lipid bilayer: a Monte Carlo simulation study.
    Sugár IP; Biltonen RL
    J Phys Chem B; 2005 Apr; 109(15):7373-86. PubMed ID: 16851844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: theory and Monte Carlo simulations.
    Pasinetti PM; Romá F; Riccardo JL; Ramirez-Pastor AJ
    J Chem Phys; 2006 Dec; 125(21):214705. PubMed ID: 17166038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations.
    Mayawala K; Vlachos DG; Edwards JS
    Biophys Chem; 2006 Jun; 121(3):194-208. PubMed ID: 16504372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient framework for photon Monte Carlo treatment planning.
    Fix MK; Manser P; Frei D; Volken W; Mini R; Born EJ
    Phys Med Biol; 2007 Oct; 52(19):N425-37. PubMed ID: 17881793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics with reaction ensemble Monte Carlo. II. Supramolecular diblock copolymers.
    Lísal M; Brennan JK; Smith WR
    J Chem Phys; 2009 Mar; 130(10):104902. PubMed ID: 19292554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation studies of phase inversion in agitated vessels using a Monte Carlo technique.
    Yeo LY; Matar OK; Perez de Ortiz ES; Hewitt GF
    J Colloid Interface Sci; 2002 Apr; 248(2):443-54. PubMed ID: 16290549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of helical tomotherapy with PENELOPE.
    Sterpin E; Salvat F; Cravens R; Ruchala K; Olivera GH; Vynckier S
    Phys Med Biol; 2008 Apr; 53(8):2161-80. PubMed ID: 18385525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strategy for characterizing the mixing state of immiscible aerosol components and the formation of multiphase aerosol particles through coagulation.
    Mitchem L; Buajarern J; Ward AD; Reid JP
    J Phys Chem B; 2006 Jul; 110(28):13700-3. PubMed ID: 16836313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems.
    Wang K; Yu YX; Gao GH; Luo GS
    J Chem Phys; 2005 Dec; 123(23):234904. PubMed ID: 16392946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement in molecule exchange efficiency in Gibbs ensemble Monte Carlo: development and implementation of the continuous fractional component move.
    Shi W; Maginn EJ
    J Comput Chem; 2008 Nov; 29(15):2520-30. PubMed ID: 18478586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population balance models and Monte Carlo simulation for nanoparticle formation in water-in-oil microemulsions: implications for CdS synthesis.
    Ethayaraja M; Bandyopadhyaya R
    J Am Chem Soc; 2006 Dec; 128(51):17102-13. PubMed ID: 17177463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle formation in water-in-oil microemulsions: experiments, mechanism, and Monte Carlo simulation.
    Ethayaraja M; Dutta K; Muthukumaran D; Bandyopadhyaya R
    Langmuir; 2007 Mar; 23(6):3418-23. PubMed ID: 17305375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.