These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16290727)

  • 1. Investigation of removal of Cr(VI), Mo(VI), W(VI), V(IV), and V(V) oxy-ions from industrial waste-waters by adsorption and electrosorption at high-area carbon cloth.
    Afkhami A; Conway BE
    J Colloid Interface Sci; 2002 Jul; 251(2):248-55. PubMed ID: 16290727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrosorption of thiocyanate anions on active carbon felt electrode in dilute solution.
    Rong C; Xien H
    J Colloid Interface Sci; 2005 Oct; 290(1):190-5. PubMed ID: 15978607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Banana peel: a green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater.
    Memon JR; Memon SQ; Bhanger MI; El-Turki A; Hallam KR; Allen GC
    Colloids Surf B Biointerfaces; 2009 May; 70(2):232-7. PubMed ID: 19181491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Batch kinetics and thermodynamics of chromium ions removal from waste solutions using synthetic adsorbents.
    Gasser MS; Morad GA; Aly HF
    J Hazard Mater; 2007 Apr; 142(1-2):118-29. PubMed ID: 16982142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grape waste as a biosorbent for removing Cr(VI) from aqueous solution.
    Chand R; Narimura K; Kawakita H; Ohto K; Watari T; Inoue K
    J Hazard Mater; 2009 Apr; 163(1):245-50. PubMed ID: 18684562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption sequence of toxic inorganic anions on a soil.
    Saeki K
    Bull Environ Contam Toxicol; 2008 Nov; 81(5):508-12. PubMed ID: 18663398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of chromium Cr(VI) by low-cost chemically activated carbon materials from water.
    Yue Z; Bender SE; Wang J; Economy J
    J Hazard Mater; 2009 Jul; 166(1):74-8. PubMed ID: 19091466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption/electrosorption of catechol and resorcinol onto high area activated carbon cloth.
    Bayram E; Hoda N; Ayranci E
    J Hazard Mater; 2009 Sep; 168(2-3):1459-66. PubMed ID: 19345487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of As(V) and Cr(VI) from aqueous solutions using solid waste from leather industry.
    Oliveira DQ; Gonçalves M; Oliveira LC; Guilherme LR
    J Hazard Mater; 2008 Feb; 151(1):280-4. PubMed ID: 18078712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of acid treatment of carbon cloth on the adsorption of nitrite and nitrate ions.
    Afkhami A; Madrakian T; Karimi Z
    J Hazard Mater; 2007 Jun; 144(1-2):427-31. PubMed ID: 17126485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Cr(VI) adsorption by coir pith studied by ESR and adsorption kinetic.
    Suksabye P; Nakajima A; Thiravetyan P; Baba Y; Nakbanpote W
    J Hazard Mater; 2009 Jan; 161(2-3):1103-8. PubMed ID: 18513862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution.
    Ryoo MW; Kim JH; Seo G
    J Colloid Interface Sci; 2003 Aug; 264(2):414-9. PubMed ID: 16256660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of Cr(VI) from aqueous solutions using modified red pine sawdust.
    Gode F; Atalay ED; Pehlivan E
    J Hazard Mater; 2008 Apr; 152(3):1201-7. PubMed ID: 17826899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions.
    Ania CO; Béguin F
    Water Res; 2007 Aug; 41(15):3372-80. PubMed ID: 17490705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate.
    Liu T; Rao P; Mak MS; Wang P; Lo IM
    Water Res; 2009 May; 43(9):2540-8. PubMed ID: 19321187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromium(VI) bioaccumulation capacities of adapted mixed cultures isolated from industrial saline wastewaters.
    Koçberber N; Dönmez G
    Bioresour Technol; 2007 Aug; 98(11):2178-83. PubMed ID: 17049232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of anionic surfactants from aqueous solutions by adsorption onto high area activated carbon cloth studied by in situ UV spectroscopy.
    Ayranci E; Duman O
    J Hazard Mater; 2007 Sep; 148(1-2):75-82. PubMed ID: 17363147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cr(VI) concentration from batch contact/tank leaching and column percolation test using fly ash with additives.
    Chai JC; Onitsuk K; Hayashi S
    J Hazard Mater; 2009 Jul; 166(1):67-73. PubMed ID: 19097697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution.
    Pillay K; Cukrowska EM; Coville NJ
    J Hazard Mater; 2009 Jul; 166(2-3):1067-75. PubMed ID: 19157694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.