These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16290832)

  • 41. Electrokinetic potential of nanoparticles in reverse AOT micelles: photometric determination and role in the processes of heterocoagulation, separation, and concentration.
    Bulavchenko AI; Popovetsky PS
    Langmuir; 2010 Jan; 26(2):736-42. PubMed ID: 19950951
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interaction between electrical double layers of soil colloids and Fe/Al oxides in suspensions.
    Hou T; Xu R; Tiwari D; Zhao A
    J Colloid Interface Sci; 2007 Jun; 310(2):670-4. PubMed ID: 17382341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stability of a dispersion of particles covered by a charge-regulated membrane: effect of the sizes of charged species.
    Hsu JP; Huang SW; Kuo YC; Tseng S
    J Colloid Interface Sci; 2003 Jun; 262(1):73-80. PubMed ID: 16256582
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Controlling the cohesion of cement paste.
    Jönsson B; Nonat A; Labbez C; Cabane B; Wennerström H
    Langmuir; 2005 Sep; 21(20):9211-21. PubMed ID: 16171354
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Excluded volume driven counterion condensation inside nanotubes in a concave electrical double layer model.
    Bohinc K; Gimsa J; Kralj-Iglic V; Slivnik T; Iglic A
    Bioelectrochemistry; 2005 Sep; 67(1):91-9. PubMed ID: 15886065
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Supercritical ethanol--a fascinating dispersion medium for silica nanoparticles.
    Ghosh SK; Deguchi S; Mukai SA; Tsujii K
    J Phys Chem B; 2007 Jul; 111(28):8169-74. PubMed ID: 17585799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complexation of ferric oxide particles with pectins of different charge density.
    Milkova V; Kamburova K; Petkanchin I; Radeva T
    Langmuir; 2008 Sep; 24(17):9495-9. PubMed ID: 18652496
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations.
    Rimer JD; Lobo RF; Vlachos DG
    Langmuir; 2005 Sep; 21(19):8960-71. PubMed ID: 16142985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analytic theory for dilute colloids in a charged slit.
    Gillespie D
    J Phys Chem B; 2010 Apr; 114(12):4302-9. PubMed ID: 20210321
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlled association in suspensions of charged nanoparticles with a weak polyelectrolyte.
    Howe AM; Wesley RD; Bertrand M; Côte M; Leroy J
    Langmuir; 2006 May; 22(10):4518-25. PubMed ID: 16649758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles.
    Zhang Y; Chen Y; Westerhoff P; Crittenden J
    Water Res; 2009 Sep; 43(17):4249-57. PubMed ID: 19577783
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the alpha-modification.
    Rosenblatt KM; Bunjes H
    Mol Pharm; 2009; 6(1):105-20. PubMed ID: 19049318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polyion-induced aggregation of oppositely charged liposomes and charged colloidal particles: the many facets of complex formation in low-density colloidal systems.
    Cametti C
    Chem Phys Lipids; 2008 Oct; 155(2):63-73. PubMed ID: 18718458
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions.
    Chen KL; Elimelech M
    J Colloid Interface Sci; 2007 May; 309(1):126-34. PubMed ID: 17331529
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Colloidal stability of bare and polymer-grafted silica nanoparticles in ionic liquids.
    Ueno K; Inaba A; Kondoh M; Watanabe M
    Langmuir; 2008 May; 24(10):5253-9. PubMed ID: 18426231
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temperature effect on the stability of bentonite colloids in water.
    García-García S; Jonsson M; Wold S
    J Colloid Interface Sci; 2006 Jun; 298(2):694-705. PubMed ID: 16458320
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures.
    Khomutov GB; Koksharov YA
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):119-47. PubMed ID: 16887093
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deposition of nanosized latex particles onto silica and cellulose surfaces studied by optical reflectometry.
    Kleimann J; Lecoultre G; Papastavrou G; Jeanneret S; Galletto P; Koper GJ; Borkovec M
    J Colloid Interface Sci; 2006 Nov; 303(2):460-71. PubMed ID: 16978638
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hofmeister effects in the restabilization of IgG--latex particles: testing Ruckenstein's theory.
    López-León T; Gea-Jódar PM; Bastos-González D; Ortega-Vinuesa JL
    Langmuir; 2005 Jan; 21(1):87-93. PubMed ID: 15620288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.