These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
472 related articles for article (PubMed ID: 1629100)
1. Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m. Brooks GA; Wolfel EE; Groves BM; Bender PR; Butterfield GE; Cymerman A; Mazzeo RS; Sutton JR; Wolfe RR; Reeves JT J Appl Physiol (1985); 1992 Jun; 72(6):2435-45. PubMed ID: 1629100 [TBL] [Abstract][Full Text] [Related]
2. Decreased reliance on lactate during exercise after acclimatization to 4,300 m. Brooks GA; Butterfield GE; Wolfe RR; Groves BM; Mazzeo RS; Sutton JR; Wolfel EE; Reeves JT J Appl Physiol (1985); 1991 Jul; 71(1):333-41. PubMed ID: 1917759 [TBL] [Abstract][Full Text] [Related]
3. Similar carbohydrate but enhanced lactate utilization during exercise after 9 wk of acclimatization to 5,620 m. Van Hall G; Calbet JA; Sondergaard H; Saltin B Am J Physiol Endocrinol Metab; 2002 Dec; 283(6):E1203-13. PubMed ID: 12388157 [TBL] [Abstract][Full Text] [Related]
4. Altitude and beta-blockade augment glucose utilization during submaximal exercise. Roberts AC; Reeves JT; Butterfield GE; Mazzeo RS; Sutton JR; Wolfel EE; Brooks GA J Appl Physiol (1985); 1996 Feb; 80(2):605-15. PubMed ID: 8929605 [TBL] [Abstract][Full Text] [Related]
5. Poor relationship between arterial [lactate] and leg net release during exercise at 4,300 m altitude. Brooks GA; Wolfel EE; Butterfield GE; Cymerman A; Roberts AC; Mazzeo RS; Reeves JT Am J Physiol; 1998 Oct; 275(4):R1192-201. PubMed ID: 9756550 [TBL] [Abstract][Full Text] [Related]
6. Increased dependence on blood glucose after acclimatization to 4,300 m. Brooks GA; Butterfield GE; Wolfe RR; Groves BM; Mazzeo RS; Sutton JR; Wolfel EE; Reeves JT J Appl Physiol (1985); 1991 Feb; 70(2):919-27. PubMed ID: 2022585 [TBL] [Abstract][Full Text] [Related]
7. Decreased exercise muscle lactate release after high altitude acclimatization. Bender PR; Groves BM; McCullough RE; McCullough RG; Trad L; Young AJ; Cymerman A; Reeves JT J Appl Physiol (1985); 1989 Oct; 67(4):1456-62. PubMed ID: 2793749 [TBL] [Abstract][Full Text] [Related]
8. Acclimatization to 4,300-m altitude decreases reliance on fat as a substrate. Roberts AC; Butterfield GE; Cymerman A; Reeves JT; Wolfel EE; Brooks GA J Appl Physiol (1985); 1996 Oct; 81(4):1762-71. PubMed ID: 8904597 [TBL] [Abstract][Full Text] [Related]
9. Lactate extraction during net lactate release in legs of humans during exercise. Stanley WC; Gertz EW; Wisneski JA; Neese RA; Morris DL; Brooks GA J Appl Physiol (1985); 1986 Apr; 60(4):1116-20. PubMed ID: 3084443 [TBL] [Abstract][Full Text] [Related]
10. The re-establishment of the normal blood lactate response to exercise in humans after prolonged acclimatization to altitude. van Hall G; Calbet JA; Søndergaard H; Saltin B J Physiol; 2001 Nov; 536(Pt 3):963-75. PubMed ID: 11691888 [TBL] [Abstract][Full Text] [Related]
11. Altitude acclimatization and energy metabolic adaptations in skeletal muscle during exercise. Green HJ; Sutton JR; Wolfel EE; Reeves JT; Butterfield GE; Brooks GA J Appl Physiol (1985); 1992 Dec; 73(6):2701-8. PubMed ID: 1490988 [TBL] [Abstract][Full Text] [Related]
12. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise. Ahlborg G; Felig P J Clin Invest; 1982 Jan; 69(1):45-54. PubMed ID: 7054242 [TBL] [Abstract][Full Text] [Related]
13. Acclimatization to high altitude increase muscle sympathetic activity both at rest and during exercise. Mazzeo RS; Brooks GA; Butterfield GE; Podolin DA; Wolfel EE; Reeves JT Am J Physiol; 1995 Jul; 269(1 Pt 2):R201-7. PubMed ID: 7631894 [TBL] [Abstract][Full Text] [Related]
14. Oxygen transport during exercise at altitude and the lactate paradox: lessons from Operation Everest II and Pikes Peak. Reeves JT; Wolfel EE; Green HJ; Mazzeo RS; Young AJ; Sutton JR; Brooks GA Exerc Sport Sci Rev; 1992; 20():275-96. PubMed ID: 1623889 [TBL] [Abstract][Full Text] [Related]
15. Peak blood lactate and blood lactate vs. workload during acclimatization to 5,050 m and in deacclimatization. Grassi B; Marzorati M; Kayser B; Bordini M; Colombini A; Conti M; Marconi C; Cerretelli P J Appl Physiol (1985); 1996 Feb; 80(2):685-92. PubMed ID: 8929616 [TBL] [Abstract][Full Text] [Related]
16. Beta-adrenergic blockade does not prevent the lactate response to exercise after acclimatization to high altitude. Mazzeo RS; Brooks GA; Butterfield GE; Cymerman A; Roberts AC; Selland M; Wolfel EE; Reeves JT J Appl Physiol (1985); 1994 Feb; 76(2):610-5. PubMed ID: 7909797 [TBL] [Abstract][Full Text] [Related]
17. Oxygen transport during steady-state submaximal exercise in chronic hypoxia. Wolfel EE; Groves BM; Brooks GA; Butterfield GE; Mazzeo RS; Moore LG; Sutton JR; Bender PR; Dahms TE; McCullough RE J Appl Physiol (1985); 1991 Mar; 70(3):1129-36. PubMed ID: 2032978 [TBL] [Abstract][Full Text] [Related]
18. Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise. Bangsbo J; Graham T; Johansen L; Saltin B J Appl Physiol (1985); 1994 Oct; 77(4):1890-5. PubMed ID: 7836214 [TBL] [Abstract][Full Text] [Related]
19. Leg and arm lactate and substrate kinetics during exercise. Van Hall G; Jensen-Urstad M; Rosdahl H; Holmberg HC; Saltin B; Calbet JA Am J Physiol Endocrinol Metab; 2003 Jan; 284(1):E193-205. PubMed ID: 12388120 [TBL] [Abstract][Full Text] [Related]
20. On the mechanisms that limit oxygen uptake during exercise in acute and chronic hypoxia: role of muscle mass. Calbet JA; Rådegran G; Boushel R; Saltin B J Physiol; 2009 Jan; 587(2):477-90. PubMed ID: 19047206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]