BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 16291240)

  • 1. Yeast model systems for examining nitrogen oxide biochemistry/signaling.
    Shinyashiki M; Lopez BE; Rodriguez CE; Fukuto JM
    Methods Enzymol; 2005; 396():301-16. PubMed ID: 16291240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nitric oxide on the copper-responsive transcription factor Ace1 in Saccharomyces cerevisiae: cytotoxic and cytoprotective actions of nitric oxide.
    Chiang KT; Shinyashiki M; Switzer CH; Valentine JS; Gralla EB; Thiele DJ; Fukuto JM
    Arch Biochem Biophys; 2000 May; 377(2):296-303. PubMed ID: 10845707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial cell-cell communication in yeast Saccharomyces cerevisiae using signaling elements from Arabidopsis thaliana.
    Chen MT; Weiss R
    Nat Biotechnol; 2005 Dec; 23(12):1551-5. PubMed ID: 16299520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NO-mediated apoptosis in yeast.
    Almeida B; Buttner S; Ohlmeier S; Silva A; Mesquita A; Sampaio-Marques B; Osório NS; Kollau A; Mayer B; Leão C; Laranjinha J; Rodrigues F; Madeo F; Ludovico P
    J Cell Sci; 2007 Sep; 120(Pt 18):3279-88. PubMed ID: 17726063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae.
    Maczek J; Junne S; Nowak P; Goetz P
    Bioprocess Biosyst Eng; 2006 Oct; 29(4):241-52. PubMed ID: 16838149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of nitric oxide (NO) with the yeast transcription factor Ace1: A model system for NO-protein thiol interactions with implications to metal metabolism.
    Shinyashiki M; Chiang KT; Switzer CH; Gralla EB; Valentine JS; Thiele DJ; Fukuto JM
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2491-6. PubMed ID: 10694579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethanol stress stimulates the Ca2+-mediated calcineurin/Crz1 pathway in Saccharomyces cerevisiae.
    Araki Y; Wu H; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jan; 107(1):1-6. PubMed ID: 19147100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The early steps of glucose signalling in yeast.
    Gancedo JM
    FEMS Microbiol Rev; 2008 Jul; 32(4):673-704. PubMed ID: 18559076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The UGA3-GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae.
    Ishida C; Aranda C; Valenzuela L; Riego L; Deluna A; Recillas-Targa F; Filetici P; López-Revilla R; González A
    Mol Microbiol; 2006 Mar; 59(6):1790-806. PubMed ID: 16553884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can yeast systems biology contribute to the understanding of human disease?
    Petranovic D; Nielsen J
    Trends Biotechnol; 2008 Nov; 26(11):584-90. PubMed ID: 18801589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of biotin tagging in Saccharomyces cerevisiae improves the sensitivity of chromatin immunoprecipitation.
    van Werven FJ; Timmers HT
    Nucleic Acids Res; 2006 Feb; 34(4):e33. PubMed ID: 16500888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae.
    Tamaki H
    J Biosci Bioeng; 2007 Oct; 104(4):245-50. PubMed ID: 18023794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of the yeast metal reductase heme protein fre1 by nitric oxide (NO): a model for inhibition of NADPH oxidase by NO.
    Shinyashiki M; Pan CJ; Lopez BE; Fukuto JM
    Free Radic Biol Med; 2004 Sep; 37(5):713-23. PubMed ID: 15288128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of antioxidants in the yeast Saccharomyces cerevisiae correlates with their effects on protein thiols.
    Bednarska S; Leroy P; Zagulski M; Bartosz G
    Biochimie; 2008 Oct; 90(10):1476-85. PubMed ID: 18555025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression: dialing up the frequency.
    Maheshri N
    Curr Biol; 2008 Dec; 18(24):R1136-9. PubMed ID: 19108770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pheromone signaling pathways in yeast.
    Dohlman HG; Slessareva JE
    Sci STKE; 2006 Dec; 2006(364):cm6. PubMed ID: 17148787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of nitrogen oxide-mediated disruption of metalloprotein function: an examination of the copper-responsive yeast transcription factor Ace1.
    Shinyashiki M; Pan CJ; Switzer CH; Fukuto JM
    Chem Res Toxicol; 2001 Dec; 14(12):1584-9. PubMed ID: 11743740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding signaling in yeast: Insights from network analysis.
    Arga KY; Onsan ZI; Kirdar B; Ulgen KO; Nielsen J
    Biotechnol Bioeng; 2007 Aug; 97(5):1246-58. PubMed ID: 17252576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAM pathway contributes to Rpb4 dependent pseudohyphal differentiation in Saccharomyces cerevisiae.
    Verma-Gaur J; Deshpande S; Sadhale PP
    Fungal Genet Biol; 2008 Oct; 45(10):1373-9. PubMed ID: 18687406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.