These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1629152)

  • 1. Secretion of CyaA-PrtB and HlyA-PrtB fusion proteins in Escherichia coli: involvement of the glycine-rich repeat domain of Erwinia chrysanthemi protease B.
    Létoffé S; Wandersman C
    J Bacteriol; 1992 Aug; 174(15):4920-7. PubMed ID: 1629152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeat sequences in the Bordetella pertussis adenylate cyclase toxin can be recognized as alternative carboxy-proximal secretion signals by the Escherichia coli alpha-haemolysin translocator.
    Sebo P; Ladant D
    Mol Microbiol; 1993 Sep; 9(5):999-1009. PubMed ID: 7934926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning, nucleotide sequence and characterization of the gene encoding the Erwinia chrysanthemi B374 PrtA metalloprotease: a third metalloprotease secreted via a C-terminal secretion signal.
    Ghigo JM; Wandersman C
    Mol Gen Genet; 1992 Dec; 236(1):135-44. PubMed ID: 1494344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subset of hybrid eukaryotic proteins is exported by the type I secretion system of Erwinia chrysanthemi.
    Palacios JL; Zaror I; Martínez P; Uribe F; Opazo P; Socías T; Gidekel M; Venegas A
    J Bacteriol; 2001 Feb; 183(4):1346-58. PubMed ID: 11157948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the haemolysin transport process through the secretion from Escherichia coli of PCM, CAT or beta-galactosidase fused to the Hly C-terminal signal domain.
    Kenny B; Haigh R; Holland IB
    Mol Microbiol; 1991 Oct; 5(10):2557-68. PubMed ID: 1791766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the C-terminal domain essential for toxic activity of adenylate cyclase toxin.
    Bejerano M; Nisan I; Ludwig A; Goebel W; Hanski E
    Mol Microbiol; 1999 Jan; 31(1):381-92. PubMed ID: 9987138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of lipopolysaccharide in the secretion of Escherichia coli alpha-haemolysin and Erwinia chrysanthemi proteases.
    Wandersman C; Létoffé S
    Mol Microbiol; 1993 Jan; 7(1):141-50. PubMed ID: 8437516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The secretion genes of Pseudomonas aeruginosa alkaline protease are functionally related to those of Erwinia chrysanthemi proteases and Escherichia coli alpha-haemolysin.
    Guzzo J; Duong F; Wandersman C; Murgier M; Lazdunski A
    Mol Microbiol; 1991 Feb; 5(2):447-53. PubMed ID: 1904127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secretion of streptokinase fusion proteins from Escherichia coli cells through the hemolysin transporter.
    Kern I; Cegłowski P
    Gene; 1995 Sep; 163(1):53-7. PubMed ID: 7557478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein secretion in gram-negative bacteria. The extracellular metalloprotease B from Erwinia chrysanthemi contains a C-terminal secretion signal analogous to that of Escherichia coli alpha-hemolysin.
    Delepelaire P; Wandersman C
    J Biol Chem; 1990 Oct; 265(28):17118-25. PubMed ID: 2211614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection for transport competence of C-terminal polypeptides derived from Escherichia coli hemolysin: the shortest peptide capable of autonomous HlyB/HlyD-dependent secretion comprises the C-terminal 62 amino acids of HlyA.
    Jarchau T; Chakraborty T; Garcia F; Goebel W
    Mol Gen Genet; 1994 Oct; 245(1):53-60. PubMed ID: 7531275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that residues -15 to -46 of the haemolysin secretion signal are involved in early steps in secretion, leading to recognition of the translocator.
    Kenny B; Chervaux C; Holland IB
    Mol Microbiol; 1994 Jan; 11(1):99-109. PubMed ID: 8145650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protease secretion by Erwinia chrysanthemi: the specific secretion functions are analogous to those of Escherichia coli alpha-haemolysin.
    Létoffé S; Delepelaire P; Wandersman C
    EMBO J; 1990 May; 9(5):1375-82. PubMed ID: 2184029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A heterologous membrane protein domain fused to the C-terminal ATP-binding domain of HlyB can export Escherichia coli hemolysin.
    Thomas WD; Wagner SP; Welch RA
    J Bacteriol; 1992 Nov; 174(21):6771-9. PubMed ID: 1400227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the prtA and prtB genes of Erwinia chrysanthemi EC16.
    Boyd C; Keen NT
    Gene; 1993 Oct; 133(1):115-8. PubMed ID: 8224883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secretion of genetically-engineered dihydrofolate reductase from Escherichia coli using an E. coli alpha-hemolysin membrane translocation system.
    Nakano H; Kawakami Y; Nishimura H
    Appl Microbiol Biotechnol; 1992 Sep; 37(6):765-71. PubMed ID: 1368920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of two components of the Serratia marcescens metalloprotease transporter: protease SM secretion in Escherichia coli is TolC dependent.
    Létoffé S; Ghigo JM; Wandersman C
    J Bacteriol; 1993 Nov; 175(22):7321-8. PubMed ID: 8226679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular secretion of pectate lyase by the Erwinia chrysanthemi out pathway is dependent upon Sec-mediated export across the inner membrane.
    He SY; Schoedel C; Chatterjee AK; Collmer A
    J Bacteriol; 1991 Jul; 173(14):4310-7. PubMed ID: 1829728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional replacement of the hemolysin A transport signal by a different primary sequence.
    Zhang F; Greig DI; Ling V
    Proc Natl Acad Sci U S A; 1993 May; 90(9):4211-5. PubMed ID: 8483936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing by OmpT of fusion proteins carrying the HlyA transport signal during secretion by the Escherichia coli hemolysin transport system.
    Hanke C; Hess J; Schumacher G; Goebel W
    Mol Gen Genet; 1992 May; 233(1-2):42-8. PubMed ID: 1603076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.