BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16291697)

  • 1. Iron-responsive regulation of biofilm formation in staphylococcus aureus involves fur-dependent and fur-independent mechanisms.
    Johnson M; Cockayne A; Williams PH; Morrissey JA
    J Bacteriol; 2005 Dec; 187(23):8211-5. PubMed ID: 16291697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Staphylococcus aureus, fur is an interactive regulator with PerR, contributes to virulence, and Is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis.
    Horsburgh MJ; Ingham E; Foster SJ
    J Bacteriol; 2001 Jan; 183(2):468-75. PubMed ID: 11133939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation.
    Soutourina O; Poupel O; Coppée JY; Danchin A; Msadek T; Martin-Verstraete I
    Mol Microbiol; 2009 Jul; 73(2):194-211. PubMed ID: 19508281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events.
    Vasil ML
    Biometals; 2007 Jun; 20(3-4):587-601. PubMed ID: 17186376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. vpsA- and luxO-independent biofilms of Vibrio cholerae.
    Müller J; Miller MC; Nielsen AT; Schoolnik GK; Spormann AM
    FEMS Microbiol Lett; 2007 Oct; 275(2):199-206. PubMed ID: 17697110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli.
    Cerca N; Jefferson KK
    FEMS Microbiol Lett; 2008 Jun; 283(1):36-41. PubMed ID: 18445167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global gene expression in Staphylococcus aureus biofilms.
    Beenken KE; Dunman PM; McAleese F; Macapagal D; Murphy E; Projan SJ; Blevins JS; Smeltzer MS
    J Bacteriol; 2004 Jul; 186(14):4665-84. PubMed ID: 15231800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-dependent repression of siderophore and biofilm formation in Actinomyces naeslundii.
    Moelling C; Oberschlacke R; Ward P; Karijolich J; Borisova K; Bjelos N; Bergeron L
    FEMS Microbiol Lett; 2007 Oct; 275(2):214-20. PubMed ID: 17825071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in Agr-type II strains.
    Melchior MB; van Osch MH; Graat RM; van Duijkeren E; Mevius DJ; Nielen M; Gaastra W; Fink-Gremmels J
    Vet Microbiol; 2009 May; 137(1-2):83-9. PubMed ID: 19150182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of regulatory genes associated with biofilm variation in a Staphylococcus aureus strain.
    Kim JH; Kim CH; Hacker J; Ziebuhr W; Lee BK; Cho SH
    J Microbiol Biotechnol; 2008 Jan; 18(1):28-34. PubMed ID: 18239412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of the ferritin gene (ftnA) of Escherichia coli by Fe(2+)-Fur is mediated by reversal of H-NS silencing and is RyhB independent.
    Nandal A; Huggins CC; Woodhall MR; McHugh J; Rodríguez-Quiñones F; Quail MA; Guest JR; Andrews SC
    Mol Microbiol; 2010 Feb; 75(3):637-57. PubMed ID: 20015147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron regulation and pathogenicity in Erwinia chrysanthemi 3937: role of the Fur repressor protein.
    Franza T; Sauvage C; Expert D
    Mol Plant Microbe Interact; 1999 Feb; 12(2):119-28. PubMed ID: 9926414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-regulated biofilm formation in Staphylococcus aureus Newman requires ica and the secreted protein Emp.
    Johnson M; Cockayne A; Morrissey JA
    Infect Immun; 2008 Apr; 76(4):1756-65. PubMed ID: 18268030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of different detection methods of biofilm formation in Staphylococcus aureus.
    Knobloch JK; Horstkotte MA; Rohde H; Mack D
    Med Microbiol Immunol; 2002 Oct; 191(2):101-6. PubMed ID: 12410349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus.
    Vuong C; Saenz HL; Götz F; Otto M
    J Infect Dis; 2000 Dec; 182(6):1688-93. PubMed ID: 11069241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional specialization within the Fur family of metalloregulators.
    Lee JW; Helmann JD
    Biometals; 2007 Jun; 20(3-4):485-99. PubMed ID: 17216355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus.
    Arrizubieta MJ; Toledo-Arana A; Amorena B; Penadés JR; Lasa I
    J Bacteriol; 2004 Nov; 186(22):7490-8. PubMed ID: 15516560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GdpS contributes to Staphylococcus aureus biofilm formation by regulation of eDNA release.
    Fischer A; Kambara K; Meyer H; Stenz L; Bonetti EJ; Girard M; Lalk M; Francois P; Schrenzel J
    Int J Med Microbiol; 2014 May; 304(3-4):284-99. PubMed ID: 24275081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system.
    Toledo-Arana A; Merino N; Vergara-Irigaray M; Débarbouillé M; Penadés JR; Lasa I
    J Bacteriol; 2005 Aug; 187(15):5318-29. PubMed ID: 16030226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus.
    Pamp SJ; Frees D; Engelmann S; Hecker M; Ingmer H
    J Bacteriol; 2006 Jul; 188(13):4861-70. PubMed ID: 16788195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.