BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 1629185)

  • 1. Deletion of lactose repressor carboxyl-terminal domain affects tetramer formation.
    Chen J; Matthews KS
    J Biol Chem; 1992 Jul; 267(20):13843-50. PubMed ID: 1629185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a dimeric repressor: dissection of subunit interfaces in Lac repressor.
    Chen J; Surendran R; Lee JC; Matthews KS
    Biochemistry; 1994 Feb; 33(5):1234-41. PubMed ID: 8110756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wild-type operator binding and altered cooperativity for inducer binding of lac repressor dimer mutant R3.
    Chen J; Alberti S; Matthews KS
    J Biol Chem; 1994 Apr; 269(17):12482-7. PubMed ID: 8175655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of mutations in oligomerization domain of Lac repressor protein.
    Chakerian AE; Matthews KS
    J Biol Chem; 1991 Nov; 266(33):22206-14. PubMed ID: 1939243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subunit dissociation affects DNA binding in a dimeric lac repressor produced by C-terminal deletion.
    Chen J; Matthews KS
    Biochemistry; 1994 Jul; 33(29):8728-35. PubMed ID: 8038163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of mutants affecting the KRK sequence in the carboxyl-terminal domain of lac repressor.
    Li L; Matthews KS
    J Biol Chem; 1995 May; 270(18):10640-9. PubMed ID: 7738001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine 84 is at the subunit interface of lac repressor protein.
    Chang WI; Olson JS; Matthews KS
    J Biol Chem; 1993 Aug; 268(23):17613-22. PubMed ID: 8349640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic analysis of unfolding and dissociation in lactose repressor protein.
    Barry JK; Matthews KS
    Biochemistry; 1999 May; 38(20):6520-8. PubMed ID: 10350470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and modification of a monomeric mutant of the lactose repressor protein.
    Daly TJ; Matthews KS
    Biochemistry; 1986 Sep; 25(19):5474-8. PubMed ID: 3535879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of aspartate residues that play key roles in the allosteric regulation of a transcription factor: aspartate 274 is essential for inducer binding in lac repressor.
    Chang WI; Barrera P; Matthews KS
    Biochemistry; 1994 Mar; 33(12):3607-16. PubMed ID: 8142359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of kinetic and regulatory properties of the tetrameric and dimeric forms of wild-type and Thr427-->Pro mutant human phenylalanine hydroxylase: contribution of the flexible hinge region Asp425-Gln429 to the tetramerization and cooperative substrate binding.
    Bjørgo E; de Carvalho RM; Flatmark T
    Eur J Biochem; 2001 Feb; 268(4):997-1005. PubMed ID: 11179966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for leucine zipper motif in lactose repressor protein.
    Chakerian AE; Tesmer VM; Manly SP; Brackett JK; Lynch MJ; Hoh JT; Matthews KS
    J Biol Chem; 1991 Jan; 266(3):1371-4. PubMed ID: 1988425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of DNA looping on the induction kinetics of the lac operon.
    Narang A
    J Theor Biol; 2007 Aug; 247(4):695-712. PubMed ID: 17490688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arginine 197 of lac repressor contributes significant energy to inducer binding. Confirmation of homology to periplasmic sugar binding proteins.
    Spotts RO; Chakerian AE; Matthews KS
    J Biol Chem; 1991 Dec; 266(34):22998-3002. PubMed ID: 1744095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of supercoiling and sequence context on operator DNA binding with lac repressor.
    Whitson PA; Hsieh WT; Wells RD; Matthews KS
    J Biol Chem; 1987 Oct; 262(30):14592-9. PubMed ID: 3667592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of two mutant lactose repressor proteins containing single tryptophans.
    Gardner JA; Matthews KS
    J Biol Chem; 1990 Dec; 265(34):21061-7. PubMed ID: 2250012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carboxyl-terminal domain dimer interface mutant 434 repressors have altered dimerization and DNA binding specificities.
    Donner AL; Paa K; Koudelka GB
    J Mol Biol; 1998 Nov; 283(5):931-46. PubMed ID: 9799634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Mnt repressor of bacteriophage P22: role of C-terminal residues in operator binding and tetramer formation.
    Knight KL; Sauer RT
    Biochemistry; 1988 Mar; 27(6):2088-94. PubMed ID: 3288281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The side-chain of the amino acid residue in position 110 of the Lac repressor influences its allosteric equilibrium.
    Müller-Hartmann H; Müller-Hill B
    J Mol Biol; 1996 Apr; 257(3):473-8. PubMed ID: 8648615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimer-to-tetramer assembly of Lac repressor involves a leucine heptad repeat.
    Alberti S; Oehler S; von Wilcken-Bergmann B; Krämer H; Müller-Hill B
    New Biol; 1991 Jan; 3(1):57-62. PubMed ID: 2039767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.