These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 1629185)

  • 41. Effect of amino acid alterations in the tryptophan-binding site of the trp repressor.
    He JJ; Matthews KS
    J Biol Chem; 1990 Jan; 265(2):731-7. PubMed ID: 2295616
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Substitutions at histidine 74 and aspartate 278 alter ligand binding and allostery in lactose repressor protein.
    Barry JK; Matthews KS
    Biochemistry; 1999 Mar; 38(12):3579-90. PubMed ID: 10090744
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Site-directed mutagenesis of the dihydrolipoyl transacetylase component (E2p) of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Binding of the peripheral components E1p and E3.
    Schulze E; Westphal AH; Boumans H; de Kok A
    Eur J Biochem; 1991 Dec; 202(3):841-8. PubMed ID: 1765097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Control of expression of the Tn10-encoded tetracycline resistance genes. Equilibrium and kinetic investigation of the regulatory reactions.
    Hillen W; Gatz C; Altschmied L; Schollmeier K; Meier I
    J Mol Biol; 1983 Sep; 169(3):707-21. PubMed ID: 6313933
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dimers generated from tetrameric phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus are inactive but exhibit cooperativity in NAD binding.
    Roitel O; Sergienko E; Branlant G
    Biochemistry; 1999 Dec; 38(49):16084-91. PubMed ID: 10587431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Resolution of the fluorescence decay of the two tryptophan residues of lac repressor using single tryptophan mutants.
    Royer CA; Gardner JA; Beechem JM; Brochon JC; Matthews KS
    Biophys J; 1990 Aug; 58(2):363-78. PubMed ID: 2207244
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Covalent attachment of Arc repressor subunits by a peptide linker enhances affinity for operator DNA.
    Robinson CR; Sauer RT
    Biochemistry; 1996 Jan; 35(1):109-16. PubMed ID: 8555163
    [TBL] [Abstract][Full Text] [Related]  

  • 48. DNA-binding properties of a lac repressor mutant incapable of forming tetramers.
    Brenowitz M; Mandal N; Pickar A; Jamison E; Adhya S
    J Biol Chem; 1991 Jan; 266(2):1281-8. PubMed ID: 1985947
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How Lac repressor finds lac operator in vitro.
    Fickert R; Müller-Hill B
    J Mol Biol; 1992 Jul; 226(1):59-68. PubMed ID: 1535665
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stability of a Lac repressor mediated "looped complex".
    Brenowitz M; Pickar A; Jamison E
    Biochemistry; 1991 Jun; 30(24):5986-98. PubMed ID: 2043636
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of the N terminus in Tet repressor for tet operator binding determined by a mutational analysis.
    Berens C; Altschmied L; Hillen W
    J Biol Chem; 1992 Jan; 267(3):1945-52. PubMed ID: 1309804
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dimerization specificity of P22 and 434 repressors is determined by multiple polypeptide segments.
    Donner AL; Carlson PA; Koudelka GB
    J Bacteriol; 1997 Feb; 179(4):1253-61. PubMed ID: 9023209
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Perturbation from a distance: mutations that alter LacI function through long-range effects.
    Swint-Kruse L; Zhan H; Fairbanks BM; Maheshwari A; Matthews KS
    Biochemistry; 2003 Dec; 42(47):14004-16. PubMed ID: 14636069
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression, purification, and functional characterization of the carboxyl-terminal domain fragment of bacteriophage 434 repressor.
    Carlson PA; Koudelka GB
    J Bacteriol; 1994 Nov; 176(22):6907-14. PubMed ID: 7961451
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo interaction of Escherichia coli lac repressor N-terminal fragments with the lac operator.
    Khoury AM; Nick HS; Lu P
    J Mol Biol; 1991 Jun; 219(4):623-34. PubMed ID: 1905359
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Specificities of three tight-binding Lac repressors.
    Kolkhof P
    Nucleic Acids Res; 1992 Oct; 20(19):5035-9. PubMed ID: 1408819
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dimerization of cGMP-dependent protein kinase Ibeta is mediated by an extensive amino-terminal leucine zipper motif, and dimerization modulates enzyme function.
    Richie-Jannetta R; Francis SH; Corbin JD
    J Biol Chem; 2003 Dec; 278(50):50070-9. PubMed ID: 12933804
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure/function relationships in human phenylalanine hydroxylase. Effect of terminal deletions on the oligomerization, activation and cooperativity of substrate binding to the enzyme.
    Knappskog PM; Flatmark T; Aarden JM; Haavik J; Martínez A
    Eur J Biochem; 1996 Dec; 242(3):813-21. PubMed ID: 9022714
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of the DNA association kinetics of the Lac repressor tetramer, its dimeric mutant LacIadi, and the native dimeric Gal repressor.
    Hsieh M; Brenowitz M
    J Biol Chem; 1997 Aug; 272(35):22092-6. PubMed ID: 9268351
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of the thermodynamic linkage of DNA binding and ion binding for dimeric and tetrameric forms of the lac repressor.
    Stickle DF; Liu G; Fried MG
    Eur J Biochem; 1994 Dec; 226(3):869-76. PubMed ID: 7813477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.