These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 1629185)

  • 61. Affinities of tight-binding lactose repressors for wild-type and pseudo-operators.
    Betz JL
    J Mol Biol; 1987 Jun; 195(3):495-504. PubMed ID: 3309337
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genetic analysis of the leucine heptad repeats of Lac repressor: evidence for a 4-helical bundle.
    Alberti S; Oehler S; von Wilcken-Bergmann B; Müller-Hill B
    EMBO J; 1993 Aug; 12(8):3227-36. PubMed ID: 8344260
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Carboxyl terminal deletion analysis of tryptophan hydroxylase.
    Mockus SM; Kumer SC; Vrana KE
    Biochim Biophys Acta; 1997 Oct; 1342(2):132-40. PubMed ID: 9392522
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Functional roles of the N-terminal amino acid residues in the Mn(II)-L-malate binding and subunit interactions of pigeon liver malic enzyme.
    Chou WY; Huang SM; Chang GG
    Protein Eng; 1997 Oct; 10(10):1205-11. PubMed ID: 9488145
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Operator DNA sequence variation enhances high affinity binding by hinge helix mutants of lactose repressor protein.
    Falcon CM; Matthews KS
    Biochemistry; 2000 Sep; 39(36):11074-83. PubMed ID: 10998245
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Contacts between Tet repressor and tet operator revealed by new recognition specificities of single amino acid replacement mutants.
    Baumeister R; Helbl V; Hillen W
    J Mol Biol; 1992 Aug; 226(4):1257-70. PubMed ID: 1518055
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of lac repressor oligomerization on regulatory outcome.
    Chakerian AE; Matthews KS
    Mol Microbiol; 1992 Apr; 6(8):963-8. PubMed ID: 1584025
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ligand-induced conformational changes in lactose repressor: a fluorescence study of single tryptophan mutants.
    Barry JK; Matthews KS
    Biochemistry; 1997 Dec; 36(50):15632-42. PubMed ID: 9398291
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Deletion mutagenesis of Tn 10 Tet repressor--localization of regions important for dimerization and inducibility in vivo.
    Berens C; Pfleiderer K; Helbl V; Hillen W
    Mol Microbiol; 1995 Nov; 18(3):437-48. PubMed ID: 8748028
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Flexibility in the inducer binding region is crucial for allostery in the Escherichia coli lactose repressor.
    Xu J; Matthews KS
    Biochemistry; 2009 Jun; 48(22):4988-98. PubMed ID: 19368358
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence.
    Markiewicz P; Kleina LG; Cruz C; Ehret S; Miller JH
    J Mol Biol; 1994 Jul; 240(5):421-33. PubMed ID: 8046748
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Functional domains of the penicillinase repressor of Bacillus licheniformis.
    Wittman V; Lin HC; Wong HC
    J Bacteriol; 1993 Nov; 175(22):7383-90. PubMed ID: 8226686
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Identification of NolR, a negative transacting factor controlling the nod regulon in Rhizobium meliloti.
    Kondorosi E; Pierre M; Cren M; Haumann U; Buiré M; Hoffmann B; Schell J; Kondorosi A
    J Mol Biol; 1991 Dec; 222(4):885-96. PubMed ID: 1840615
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dimeric lac repressors exhibit phase-dependent co-operativity.
    Müller J; Barker A; Oehler S; Müller-Hill B
    J Mol Biol; 1998 Dec; 284(4):851-7. PubMed ID: 9837708
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Construction, purification, and characterization of a hybrid protein comprising the DNA binding domain of the LexA repressor and the Jun leucine zipper: a circular dichroism and mutagenesis study.
    Schmidt-Dörr T; Oertel-Buchheit P; Pernelle C; Bracco L; Schnarr M; Granger-Schnarr M
    Biochemistry; 1991 Oct; 30(40):9657-64. PubMed ID: 1911752
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins.
    Holtham CA; Jumel K; Miller CM; Harding SE; Baumberg S; Stockley PG
    J Mol Biol; 1999 Jun; 289(4):707-27. PubMed ID: 10369757
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Highly cooperative DNA binding by the coliphage HK022 repressor.
    Carlson NG; Little JW
    J Mol Biol; 1993 Apr; 230(4):1108-30. PubMed ID: 8487297
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Role of Asp274 in lac repressor: diminished sugar binding and altered conformational effects in mutants.
    Chang WI; Matthews KS
    Biochemistry; 1995 Jul; 34(28):9227-34. PubMed ID: 7619824
    [TBL] [Abstract][Full Text] [Related]  

  • 79. lac repressor: crystallization of intact tetramer and its complexes with inducer and operator DNA.
    Pace HC; Lu P; Lewis M
    Proc Natl Acad Sci U S A; 1990 Mar; 87(5):1870-3. PubMed ID: 2408042
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Determination of the ligand-binding characteristics of several tight-binding mutants of the lactose repressor protein.
    O'Gorman RB; Ferguson L; Betz JL; Sadler JR; Matthews KS
    Biochim Biophys Acta; 1981 Apr; 653(2):236-47. PubMed ID: 7013812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.