BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 1629210)

  • 1. Structure-function relationships in an antifreeze polypeptide. The role of neutral, polar amino acids.
    Wen D; Laursen RA
    J Biol Chem; 1992 Jul; 267(20):14102-8. PubMed ID: 1629210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-function relationship in a winter flounder antifreeze polypeptide. II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides.
    Chakrabartty A; Yang DS; Hew CL
    J Biol Chem; 1989 Jul; 264(19):11313-6. PubMed ID: 2738068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function relationships in a winter flounder antifreeze polypeptide. I. Stabilization of an alpha-helical antifreeze polypeptide by charged-group and hydrophobic interactions.
    Chakrabartty A; Ananthanarayanan VS; Hew CL
    J Biol Chem; 1989 Jul; 264(19):11307-12. PubMed ID: 2738067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity.
    Zhang W; Laursen RA
    J Biol Chem; 1998 Dec; 273(52):34806-12. PubMed ID: 9857006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of enhanced alpha-helicity on the activity of a winter flounder antifreeze polypeptide.
    Chakrabartty A; Hew CL
    Eur J Biochem; 1991 Dec; 202(3):1057-63. PubMed ID: 1765066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for binding of an antifreeze polypeptide to ice.
    Wen D; Laursen RA
    Biophys J; 1992 Dec; 63(6):1659-62. PubMed ID: 1489916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes.
    Knight CA; Cheng CC; DeVries AL
    Biophys J; 1991 Feb; 59(2):409-18. PubMed ID: 2009357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial antifreeze polypeptides: alpha-helical peptides with KAAK motifs have antifreeze and ice crystal morphology modifying properties.
    Zhang W; Laursen RA
    FEBS Lett; 1999 Jul; 455(3):372-6. PubMed ID: 10437807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type I 'antifreeze' proteins. Structure-activity studies and mechanisms of ice growth inhibition.
    Harding MM; Ward LG; Haymet AD
    Eur J Biochem; 1999 Sep; 264(3):653-65. PubMed ID: 10491111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A natural variant of type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze.
    Chao H; Hodges RS; Kay CM; Gauthier SY; Davies PL
    Protein Sci; 1996 Jun; 5(6):1150-6. PubMed ID: 8762146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of type III antifreeze protein dilution and mutation on the growth inhibition of ice.
    DeLuca CI; Chao H; Sönnichsen FD; Sykes BD; Davies PL
    Biophys J; 1996 Nov; 71(5):2346-55. PubMed ID: 8913575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ice-binding structure and mechanism of an antifreeze protein from winter flounder.
    Sicheri F; Yang DS
    Nature; 1995 Jun; 375(6530):427-31. PubMed ID: 7760940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A D-antifreeze polypeptide displays the same activity as its natural L-enantiomer.
    Wen D; Laursen RA
    FEBS Lett; 1993 Feb; 317(1-2):31-4. PubMed ID: 8428630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonequilibrium antifreeze peptides and the recrystallization of ice.
    Knight CA; Wen D; Laursen RA
    Cryobiology; 1995 Feb; 32(1):23-34. PubMed ID: 7697996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationships in an antifreeze polypeptide. The effect of added bulky groups on activity.
    Wen D; Laursen RA
    J Biol Chem; 1993 Aug; 268(22):16401-5. PubMed ID: 8344925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-optimized structure of antifreeze protein and its binding mechanism.
    Chou KC
    J Mol Biol; 1992 Jan; 223(2):509-17. PubMed ID: 1738160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2-1 0) faces of ice.
    Wierzbicki A; Taylor MS; Knight CA; Madura JD; Harrington JP; Sikes CS
    Biophys J; 1996 Jul; 71(1):8-18. PubMed ID: 8804585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of a recombinant type I sculpin antifreeze protein.
    Kwan AH; Fairley K; Anderberg PI; Liew CW; Harding MM; Mackay JP
    Biochemistry; 2005 Feb; 44(6):1980-8. PubMed ID: 15697223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A diminished role for hydrogen bonds in antifreeze protein binding to ice.
    Chao H; Houston ME; Hodges RS; Kay CM; Sykes BD; Loewen MC; Davies PL; Sönnichsen FD
    Biochemistry; 1997 Dec; 36(48):14652-60. PubMed ID: 9398184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.