These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 1629215)
41. Gel kinetic analysis of DNA polymerase fidelity in the presence of proofreading using bacteriophage T4 DNA polymerase. Creighton S; Goodman MF J Biol Chem; 1995 Mar; 270(9):4759-74. PubMed ID: 7876249 [TBL] [Abstract][Full Text] [Related]
42. A coupled complex of T4 DNA replication helicase (gp41) and polymerase (gp43) can perform rapid and processive DNA strand-displacement synthesis. Dong F; Weitzel SE; von Hippel PH Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14456-61. PubMed ID: 8962073 [TBL] [Abstract][Full Text] [Related]
43. Processive replication is contingent on the exonuclease subunit of DNA polymerase III holoenzyme. Studwell PS; O'Donnell M J Biol Chem; 1990 Jan; 265(2):1171-8. PubMed ID: 2153103 [TBL] [Abstract][Full Text] [Related]
44. Functional consequences of the arabinosylcytosine structural lesion in DNA. Mikita T; Beardsley GP Biochemistry; 1988 Jun; 27(13):4698-705. PubMed ID: 2458756 [TBL] [Abstract][Full Text] [Related]
45. T4 DNA polymerase. Rates and processivity on single-stranded DNA templates. Mace DC; Alberts BM J Mol Biol; 1984 Aug; 177(2):295-311. PubMed ID: 6748084 [TBL] [Abstract][Full Text] [Related]
46. The slow dissociation of the T4 DNA polymerase holoenzyme when stalled by nucleotide omission. An indication of a highly processive enzyme. Hacker KJ; Alberts BM J Biol Chem; 1994 Sep; 269(39):24209-20. PubMed ID: 7929077 [TBL] [Abstract][Full Text] [Related]
47. Effects of the bacteriophage T4 gene 41 and gene 32 proteins on RNA primer synthesis: coupling of leading- and lagging-strand DNA synthesis at a replication fork. Cha TA; Alberts BM Biochemistry; 1990 Feb; 29(7):1791-8. PubMed ID: 2158814 [TBL] [Abstract][Full Text] [Related]
48. T5 DNA polymerase: structural--functional relationships to other DNA polymerases. Leavitt MC; Ito J Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4465-9. PubMed ID: 2660138 [TBL] [Abstract][Full Text] [Related]
49. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site. Tanguy Le Gac N; Delagoutte E; Germain M; Villani G J Mol Biol; 2004 Mar; 336(5):1023-34. PubMed ID: 15037066 [TBL] [Abstract][Full Text] [Related]
50. Studies of the DNA helicase-RNA primase unit from bacteriophage T4. A trinucleotide sequence on the DNA template starts RNA primer synthesis. Cha TA; Alberts BM J Biol Chem; 1986 May; 261(15):7001-10. PubMed ID: 2422175 [TBL] [Abstract][Full Text] [Related]
51. Leading and lagging strand synthesis at the replication fork of bacteriophage T7. Distinct properties of T7 gene 4 protein as a helicase and primase. Nakai H; Richardson CC J Biol Chem; 1988 Jul; 263(20):9818-30. PubMed ID: 2838481 [TBL] [Abstract][Full Text] [Related]
52. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Cowart M; Gibson KJ; Allen DJ; Benkovic SJ Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768 [TBL] [Abstract][Full Text] [Related]
53. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR; Bloom LB; Goodman MF; Beechem JM Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721 [TBL] [Abstract][Full Text] [Related]
54. Contribution of the 3'- to 5'-exonuclease activity of herpes simplex virus type 1 DNA polymerase to the fidelity of DNA synthesis. Song L; Chaudhuri M; Knopf CW; Parris DS J Biol Chem; 2004 Apr; 279(18):18535-43. PubMed ID: 14982924 [TBL] [Abstract][Full Text] [Related]
55. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding. Bailey MF; Van der Schans EJ; Millar DP Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151 [TBL] [Abstract][Full Text] [Related]
56. Processive proofreading and the spatial relationship between polymerase and exonuclease active sites of bacteriophage phi29 DNA polymerase. de Vega M; Blanco L; Salas M J Mol Biol; 1999 Sep; 292(1):39-51. PubMed ID: 10493855 [TBL] [Abstract][Full Text] [Related]
57. Structural analyses of gp45 sliding clamp interactions during assembly of the bacteriophage T4 DNA polymerase holoenzyme. III. The Gp43 DNA polymerase binds to the same face of the sliding clamp as the clamp loader. Latham GJ; Bacheller DJ; Pietroni P; von Hippel PH J Biol Chem; 1997 Dec; 272(50):31685-92. PubMed ID: 9395510 [TBL] [Abstract][Full Text] [Related]
58. An error-correcting proofreading exonuclease-polymerase that copurifies with DNA-polymerase-alpha-primase. Bialek G; Grosse F J Biol Chem; 1993 Mar; 268(8):6024-33. PubMed ID: 8383685 [TBL] [Abstract][Full Text] [Related]
59. Effects of substitutions of arginine residues on the basic surface of herpes simplex virus UL42 support a role for DNA binding in processive DNA synthesis. Randell JC; Komazin G; Jiang C; Hwang CB; Coen DM J Virol; 2005 Sep; 79(18):12025-34. PubMed ID: 16140778 [TBL] [Abstract][Full Text] [Related]
60. Functions of replication factor C and proliferating-cell nuclear antigen: functional similarity of DNA polymerase accessory proteins from human cells and bacteriophage T4. Tsurimoto T; Stillman B Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1023-7. PubMed ID: 1967833 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]