These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 16292256)

  • 1. Chaos-based communications at high bit rates using commercial fibre-optic links.
    Argyris A; Syvridis D; Larger L; Annovazzi-Lodi V; Colet P; Fischer I; García-Ojalvo J; Mirasso CR; Pesquera L; Shore KA
    Nature; 2005 Nov; 438(7066):343-6. PubMed ID: 16292256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaos-on-a-chip secures data transmission in optical fiber links.
    Argyris A; Grivas E; Hamacher M; Bogris A; Syvridis D
    Opt Express; 2010 Mar; 18(5):5188-98. PubMed ID: 20389532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers.
    Hirano K; Yamazaki T; Morikatsu S; Okumura H; Aida H; Uchida A; Yoshimori S; Yoshimura K; Harayama T; Davis P
    Opt Express; 2010 Mar; 18(6):5512-24. PubMed ID: 20389568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography.
    Kanter I; Butkovski M; Peleg Y; Zigzag M; Aviad Y; Reidler I; Rosenbluh M; Kinzel W
    Opt Express; 2010 Aug; 18(17):18292-302. PubMed ID: 20721222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secure passive optical network based on chaos synchronization.
    Jiang N; Zhang C; Qiu K
    Opt Lett; 2012 Nov; 37(21):4501-3. PubMed ID: 23114343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communicating with noise: How chaos and noise combine to generate secure encryption keys.
    Minai AA; Pandian TD
    Chaos; 1998 Sep; 8(3):621-628. PubMed ID: 12779766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaotic communication in radio-over-fiber transmission based on optoelectronic feedback semiconductor lasers.
    Lin FY; Tsai MC
    Opt Express; 2007 Jan; 15(2):302-11. PubMed ID: 19532245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scheme of coherent optical chaos communication.
    Wang L; Mao X; Wang A; Wang Y; Gao Z; Li S; Yan L
    Opt Lett; 2020 Sep; 45(17):4762-4765. PubMed ID: 32870851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorless WDM-PON based on a Fabry-Pérot laser diode and reflective semiconductor optical amplifiers for simultaneous transmission of bidirectional gigabit baseband signals and broadcasting signal.
    Pham TT; Kim HS; Won YY; Han SK
    Opt Express; 2009 Sep; 17(19):16571-80. PubMed ID: 19770872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bidirectional chaos communication between two outer semiconductor lasers coupled mutually with a central semiconductor laser.
    Li P; Wu JG; Wu ZM; Lin XD; Deng D; Liu YR; Xia GQ
    Opt Express; 2011 Nov; 19(24):23921-31. PubMed ID: 22109416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 100Gb/s coherent optical secure communication over 1000 km based on analog-digital hybrid chaos.
    Wu Y; Zhang Z; Luo H; Deng L; Yang Q; Dai X; Liu D; Gao X; Yu Y; Cheng M
    Opt Express; 2023 Sep; 31(20):33200-33211. PubMed ID: 37859105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate.
    Ke J; Yi L; Xia G; Hu W
    Opt Lett; 2018 Mar; 43(6):1323-1326. PubMed ID: 29543282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semiconductor-laser-based hybrid chaos source and its application in secure key distribution.
    Zhao Z; Cheng M; Luo C; Deng L; Zhang M; Fu S; Tang M; Shum P; Liu D
    Opt Lett; 2019 May; 44(10):2605-2608. PubMed ID: 31090743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trading off security and practicability to explore high-speed and long-haul chaotic optical communication.
    Jiang L; Pan Y; Yi A; Feng J; Pan W; Yi L; Hu W; Wang A; Wang Y; Qin Y; Yan L
    Opt Express; 2021 Apr; 29(8):12750-12762. PubMed ID: 33985025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete phase and amplitude synchronization of broadband chaotic optical fields generated by semiconductor lasers subject to optical injection.
    Chen HF; Liu JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046216. PubMed ID: 15903779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evaluation of subcarrier modulation in chaotic optical communication systems.
    Argyris A; Bogris A; Hamacher M; Syvridis D
    Opt Lett; 2010 Jan; 35(2):199-201. PubMed ID: 20081967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive synchronization of a switching system and its applications to secure communications.
    Xia W; Cao J
    Chaos; 2008 Jun; 18(2):023128. PubMed ID: 18601495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analog-digital hybrid chaos-based long-haul coherent optical secure communication.
    Fu Y; Cheng M; Shao W; Luo H; Li D; Deng L; Yang Q; Liu D
    Opt Lett; 2021 Apr; 46(7):1506-1509. PubMed ID: 33793476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-haul dense wavelength division multiplexing between a chaotic optical secure channel and a conventional fiber-optic channel.
    Zhao Q; Yin H; Chen X
    Appl Opt; 2012 Aug; 51(22):5585-90. PubMed ID: 22859052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 32  Gb/s chaotic optical communications by deep-learning-based chaos synchronization.
    Ke J; Yi L; Yang Z; Yang Y; Zhuge Q; Chen Y; Hu W
    Opt Lett; 2019 Dec; 44(23):5776-5779. PubMed ID: 31774777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.