These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

582 related articles for article (PubMed ID: 16292304)

  • 41. Transient IR spectroscopy identifies key interactions and unravels new intermediates in the photocycle of a bacterial phytochrome.
    Kübel J; Chenchiliyan M; Ooi SA; Gustavsson E; Isaksson L; Kuznetsova V; Ihalainen JA; Westenhoff S; Maj M
    Phys Chem Chem Phys; 2020 May; 22(17):9195-9203. PubMed ID: 32149285
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phytochrome structure and signaling mechanisms.
    Rockwell NC; Su YS; Lagarias JC
    Annu Rev Plant Biol; 2006; 57():837-58. PubMed ID: 16669784
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fully Quantum Chemical Treatment of Chromophore-Protein Interactions in Phytochromes.
    González R; Mroginski MA
    J Phys Chem B; 2019 Nov; 123(46):9819-9830. PubMed ID: 31674186
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Light modulation of histidine-kinase activity in bacterial phytochromes monitored by size exclusion chromatography, crosslinking, and limited proteolysis.
    Noack S; Lamparter T
    Methods Enzymol; 2007; 423():203-21. PubMed ID: 17609133
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phytochrome signaling: solving the Gordian knot with microbial relatives.
    Vierstra RD; Zhang J
    Trends Plant Sci; 2011 Aug; 16(8):417-26. PubMed ID: 21719341
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phytochrome ancestry: sensors of bilins and light.
    Montgomery BL; Lagarias JC
    Trends Plant Sci; 2002 Aug; 7(8):357-66. PubMed ID: 12167331
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide.
    Lapko VN; Jiang XY; Smith DL; Song PS
    Biochemistry; 1998 Sep; 37(36):12526-35. PubMed ID: 9730825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Signaling Mechanism of Phytochromes in Solution.
    Isaksson L; Gustavsson E; Persson C; Brath U; Vrhovac L; Karlsson G; Orekhov V; Westenhoff S
    Structure; 2021 Feb; 29(2):151-160.e3. PubMed ID: 32916102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties.
    Karniol B; Vierstra RD
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2807-12. PubMed ID: 12604773
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reconstitution of blue-green reversible photoconversion of a cyanobacterial photoreceptor, PixJ1, in phycocyanobilin-producing Escherichia coli.
    Yoshihara S; Shimada T; Matsuoka D; Zikihara K; Kohchi T; Tokutomi S
    Biochemistry; 2006 Mar; 45(11):3775-84. PubMed ID: 16533061
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The interplay between chromophore and protein determines the extended excited state dynamics in a single-domain phytochrome.
    Slavov C; Fischer T; Barnoy A; Shin H; Rao AG; Wiebeler C; Zeng X; Sun Y; Xu Q; Gutt A; Zhao KH; Gärtner W; Yang X; Schapiro I; Wachtveitl J
    Proc Natl Acad Sci U S A; 2020 Jul; 117(28):16356-16362. PubMed ID: 32591422
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The structure of a complete phytochrome sensory module in the Pr ground state.
    Essen LO; Mailliet J; Hughes J
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14709-14. PubMed ID: 18799745
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spectroscopy and a high-resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1.
    Mailliet J; Psakis G; Feilke K; Sineshchekov V; Essen LO; Hughes J
    J Mol Biol; 2011 Oct; 413(1):115-27. PubMed ID: 21888915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A brief history of phytochromes.
    Rockwell NC; Lagarias JC
    Chemphyschem; 2010 Apr; 11(6):1172-80. PubMed ID: 20155775
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancing the Inhomogeneous Photodynamics of Canonical Bacteriophytochrome.
    Rydzewski J; Walczewska-Szewc K; Czach S; Nowak W; Kuczera K
    J Phys Chem B; 2022 Apr; 126(14):2647-2657. PubMed ID: 35357137
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling.
    Anders K; Daminelli-Widany G; Mroginski MA; von Stetten D; Essen LO
    J Biol Chem; 2013 Dec; 288(50):35714-25. PubMed ID: 24174528
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chromophore selectivity in bacterial phytochromes: dissecting the process of chromophore attachment.
    Quest B; Gärtner W
    Eur J Biochem; 2004 Mar; 271(6):1117-26. PubMed ID: 15009190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state.
    Cornilescu G; Ulijasz AT; Cornilescu CC; Markley JL; Vierstra RD
    J Mol Biol; 2008 Nov; 383(2):403-13. PubMed ID: 18762196
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study.
    Strambi A; Durbeej B
    Photochem Photobiol Sci; 2011 Apr; 10(4):569-79. PubMed ID: 21253657
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion.
    Yang X; Stojkovic EA; Kuk J; Moffat K
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12571-6. PubMed ID: 17640891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.