These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16292571)

  • 1. Path integration: is there a difference between athletes and non-athletes?
    Bredin J; Kerlirzin Y; Israël I
    Exp Brain Res; 2005 Dec; 167(4):670-4. PubMed ID: 16292571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Goal-directed linear locomotion in normal and labyrinthine-defective subjects.
    Glasauer S; Amorim MA; Vitte E; Berthoz A
    Exp Brain Res; 1994; 98(2):323-35. PubMed ID: 8050517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path.
    Glasauer S; Amorim MA; Viaud-Delmon I; Berthoz A
    Exp Brain Res; 2002 Aug; 145(4):489-97. PubMed ID: 12172660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speed-dependent deviations from a straight-ahead path during forward locomotion in healthy individuals.
    Dickstein R; Ufaz S; Dunsky A; Nadeau S; Abulaffio N
    Am J Phys Med Rehabil; 2005 May; 84(5):330-7. PubMed ID: 15829779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Idiothetic navigation in humans: estimation of path length.
    Mittelstaedt ML; Mittelstaedt H
    Exp Brain Res; 2001 Aug; 139(3):318-32. PubMed ID: 11545471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure to a rotating virtual environment during treadmill locomotion causes adaptation in heading direction.
    Mulavara AP; Richards JT; Ruttley T; Marshburn A; Nomura Y; Bloomberg JJ
    Exp Brain Res; 2005 Oct; 166(2):210-9. PubMed ID: 16034569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular trajectory formation during blind locomotion: a test for path integration and motor memory.
    Takei Y; Grasso R; Amorim MA; Berthoz A
    Exp Brain Res; 1997 Jun; 115(2):361-8. PubMed ID: 9224864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial memory and path integration studied by self-driven passive linear displacement. I. Basic properties.
    Israël I; Grasso R; Georges-Francois P; Tsuzuku T; Berthoz A
    J Neurophysiol; 1997 Jun; 77(6):3180-92. PubMed ID: 9212267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Transient Perturbations of Short-Term Memory on Target-Directed Blind Locomotion.
    Piekarski S; Lajoie Y; Paquet N
    J Mot Behav; 2018; 50(1):2-7. PubMed ID: 28632102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Navigational strategies during fast walking: a comparison between trained athletes and non-athletes.
    Gérin-Lajoie M; Ronsky JL; Loitz-Ramage B; Robu I; Richards CL; McFadyen BJ
    Gait Posture; 2007 Oct; 26(4):539-45. PubMed ID: 17208442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walking performance of vestibular-defective patients before and after unilateral vestibular neurotomy.
    Borel L; Harlay F; Lopez C; Magnan J; Chays A; Lacour M
    Behav Brain Res; 2004 Apr; 150(1-2):191-200. PubMed ID: 15033292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of vestibular and visual stimulation on split-belt walking.
    Marques B; Colombo G; Müller R; Dürsteler MR; Dietz V; Straumann D
    Exp Brain Res; 2007 Dec; 183(4):457-63. PubMed ID: 17665177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homing by path integration when a locomotion trajectory crosses itself.
    Yamamoto N; Meléndez JA; Menzies DT
    Perception; 2014; 43(10):1049-60. PubMed ID: 25509682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path integration deficits during linear locomotion after human medial temporal lobectomy.
    Philbeck JW; Behrmann M; Levy L; Potolicchio SJ; Caputy AJ
    J Cogn Neurosci; 2004 May; 16(4):510-20. PubMed ID: 15165344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effects of Obstacle Type and Locomotion Form on Path Selection in Rugby Players.
    Pfaff LM; Cinelli ME
    Motor Control; 2018 Jul; 22(3):263-274. PubMed ID: 29265993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trunk muscle proprioceptive input assists steering of locomotion.
    Schmid M; De Nunzio AM; Schieppati M
    Neurosci Lett; 2005 Aug 12-19; 384(1-2):127-32. PubMed ID: 15885899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of locomotion in expert gymnasts in the absence of vision.
    Danion F; Boyadjian A; Marin L
    J Sports Sci; 2000 Oct; 18(10):809-14. PubMed ID: 11055816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The validity of the GaitRite and the Functional Ambulation Performance scoring system in the analysis of Parkinson gait.
    Nelson AJ; Zwick D; Brody S; Doran C; Pulver L; Rooz G; Sadownick M; Nelson R; Rothman J
    NeuroRehabilitation; 2002; 17(3):255-62. PubMed ID: 12237507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the limb kinematics and walking-distance estimation after shank elongation: evidence for a locomotor body schema?
    Dominici N; Daprati E; Nico D; Cappellini G; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2009 Mar; 101(3):1419-29. PubMed ID: 19091916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The predictive brain: anticipatory control of head direction for the steering of locomotion.
    Grasso R; Glasauer S; Takei Y; Berthoz A
    Neuroreport; 1996 Apr; 7(6):1170-4. PubMed ID: 8817526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.