These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16292571)

  • 21. Perception of angular displacement without landmarks: evidence for Bayesian fusion of vestibular, optokinetic, podokinesthetic, and cognitive information.
    Jürgens R; Becker W
    Exp Brain Res; 2006 Oct; 174(3):528-43. PubMed ID: 16832684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pre-stimulus alpha rhythms are correlated with post-stimulus sensorimotor performance in athletes and non-athletes: a high-resolution EEG study.
    Del Percio C; Marzano N; Tilgher S; Fiore A; Di Ciolo E; Aschieri P; Lino A; Toràn G; Babiloni C; Eusebi F
    Clin Neurophysiol; 2007 Aug; 118(8):1711-20. PubMed ID: 17581775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The contribution of nonvisual information to simple place navigation and distance estimation: an examination of path integration.
    Bigel MG; Ellard CG
    Can J Exp Psychol; 2000 Sep; 54(3):172-85. PubMed ID: 11021037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bayesian integration during sensorimotor estimation in elite athletes.
    Neto OP; Curty V; Crespim L; Kennedy DM
    Hum Mov Sci; 2022 Feb; 81():102895. PubMed ID: 34775164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Going the distance: spatial scale of athletic experience affects the accuracy of path integration.
    Smith AD; Howard CJ; Alcock N; Cater K
    Exp Brain Res; 2010 Sep; 206(1):93-8. PubMed ID: 20734036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Movement strategies and sensory reweighting in tandem stance: differences between trained tightrope walkers and untrained subjects.
    Honegger F; Tielkens RJ; Allum JH
    Neuroscience; 2013 Dec; 254():285-300. PubMed ID: 24090964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Comparative analysis of the regulation of vertical posture in athletes of different sports qualifications].
    Mel'nikova AA; Savin AA; Emel'ianova LV; Nikolaev RIu; Vikulov AD
    Fiziol Cheloveka; 2011; 37(5):113-9. PubMed ID: 22117466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equivalence of human odometry by walk and run is indifferent to self-selected speed.
    Isenhower RW; Kant V; Frank TD; Pinto CM; Carello C; Turvey MT
    J Mot Behav; 2012; 44(1):47-52. PubMed ID: 22269023
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How does visual manipulation affect obstacle avoidance strategies used by athletes?
    Bijman MP; Fisher JJ; Vallis LA
    J Sports Sci; 2016; 34(10):915-22. PubMed ID: 26291383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direction and distance deficits in path integration after unilateral vestibular loss depend on task complexity.
    Péruch P; Borel L; Magnan J; Lacour M
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):862-72. PubMed ID: 16256321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real versus imagined locomotion: a [18F]-FDG PET-fMRI comparison.
    la Fougère C; Zwergal A; Rominger A; Förster S; Fesl G; Dieterich M; Brandt T; Strupp M; Bartenstein P; Jahn K
    Neuroimage; 2010 May; 50(4):1589-98. PubMed ID: 20034578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flexible kinesthetic distance perception: when do your arms tell you how far you have walked?
    Harrison SJ; Kuznetsov N; Breheim S
    J Mot Behav; 2013; 45(3):239-47. PubMed ID: 23663188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of sensory inputs and motor demands on the control of the centre of mass velocity during gait initiation in humans.
    Chastan N; Westby GW; du Montcel ST; Do MC; Chong RK; Agid Y; Welter ML
    Neurosci Lett; 2010 Jan; 469(3):400-4. PubMed ID: 20026383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trade-offs between horizontal and vertical velocities during triple jumping and the effect on phase distances.
    Allen SJ; King MA; Yeadon MR
    J Biomech; 2013 Mar; 46(5):979-83. PubMed ID: 23351365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics of single and double obstacle avoidance strategies: a comparison between adults and children.
    Berard JR; Vallis LA
    Exp Brain Res; 2006 Oct; 175(1):21-31. PubMed ID: 16761138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative analysis of human walking trajectory on a circular path in darkness.
    Takei Y; Grasso R; Berthoz A
    Brain Res Bull; 1996; 40(5-6):491-5; discussion 495-6. PubMed ID: 8886379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic visual-vestibular integration during goal directed human locomotion.
    Deshpande N; Patla AE
    Exp Brain Res; 2005 Oct; 166(2):237-47. PubMed ID: 16032405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of aging on visual reweighting during locomotion.
    Berard J; Fung J; Lamontagne A
    Clin Neurophysiol; 2012 Jul; 123(7):1422-8. PubMed ID: 22204920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visual-vestibular interactions in postural control during the execution of a dynamic task.
    Bent LR; McFadyen BJ; Inglis JT
    Exp Brain Res; 2002 Oct; 146(4):490-500. PubMed ID: 12355278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of vision in Parkinson's disease locomotion control: free walking task.
    Vitório R; Lirani-Silva E; Barbieri FA; Raile V; Batistela RA; Stella F; Gobbi LT
    Gait Posture; 2012 Feb; 35(2):175-9. PubMed ID: 21962407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.