These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 16292574)

  • 1. Temporal characteristics of neurons in the central mesencephalic reticular formation of head unrestrained monkeys.
    Pathmanathan JS; Cromer JA; Cullen KE; Waitzman DM
    Exp Brain Res; 2006 Jan; 168(4):471-92. PubMed ID: 16292574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial characteristics of neurons in the central mesencephalic reticular formation (cMRF) of head-unrestrained monkeys.
    Pathmanathan JS; Presnell R; Cromer JA; Cullen KE; Waitzman DM
    Exp Brain Res; 2006 Jan; 168(4):455-70. PubMed ID: 16292575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurones associated with saccade metrics in the monkey central mesencephalic reticular formation.
    Cromer JA; Waitzman DM
    J Physiol; 2006 Feb; 570(Pt 3):507-23. PubMed ID: 16308353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze shift duration, independent of amplitude, influences the number of spikes in the burst for medium-lead burst neurons in pontine reticular formation.
    Walton MM; Freedman EG
    Exp Brain Res; 2011 Oct; 214(2):225-39. PubMed ID: 21842410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of saccade-associated neuronal activity in the primate central mesencephalic and paramedian pontine reticular formations.
    Cromer JA; Waitzman DM
    J Neurophysiol; 2007 Aug; 98(2):835-50. PubMed ID: 17537904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation.
    Knight TA; Fuchs AF
    J Neurophysiol; 2007 Jan; 97(1):618-34. PubMed ID: 17065243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of reversible inactivation of the primate mesencephalic reticular formation. I. Hypermetric goal-directed saccades.
    Waitzman DM; Silakov VL; DePalma-Bowles S; Ayers AS
    J Neurophysiol; 2000 Apr; 83(4):2260-84. PubMed ID: 10758133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Priming of head premotor circuits during oculomotor preparation.
    Corneil BD; Munoz DP; Olivier E
    J Neurophysiol; 2007 Jan; 97(1):701-14. PubMed ID: 17079344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of collicular fixation neurons to gaze shift perturbations in head-unrestrained monkey reveal gaze feedback control.
    Choi WY; Guitton D
    Neuron; 2006 May; 50(3):491-505. PubMed ID: 16675402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical stimulation of rhesus monkey nucleus reticularis gigantocellularis. II. Effects on metrics and kinematics of ongoing gaze shifts to visual targets.
    Freedman EG; Quessy S
    Exp Brain Res; 2004 Jun; 156(3):357-76. PubMed ID: 14985900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal recoding of rapid eye movement signals in the monkey paramedian pontine reticular formation (PPRF).
    Hepp K; Henn V
    Exp Brain Res; 1983; 52(1):105-20. PubMed ID: 6628590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence against direct connections to PPRF EBNs from SC in the monkey.
    Keller EL; McPeek RM; Salz T
    J Neurophysiol; 2000 Sep; 84(3):1303-13. PubMed ID: 10980004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of the frontal eye field to gaze shifts in the head-unrestrained rhesus monkey: neuronal activity.
    Knight TA
    Neuroscience; 2012 Dec; 225():213-36. PubMed ID: 22944386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical evidence for interconnections between the central mesencephalic reticular formation and cervical spinal cord in the cat and macaque.
    Warren S; Waitzman DM; May PJ
    Anat Rec (Hoboken); 2008 Feb; 291(2):141-60. PubMed ID: 18213702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orienting-related eye-neck neurons of the medial ponto-bulbar reticular formation do not participate in horizontal canal-dependent vestibular reflexes of alert cats.
    Kitama T; Grantyn A; Berthoz A
    Brain Res Bull; 1995; 38(4):337-47. PubMed ID: 8535856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reticular Formation Connections Underlying Horizontal Gaze: The Central Mesencephalic Reticular Formation (cMRF) as a Conduit for the Collicular Saccade Signal.
    Wang N; Perkins E; Zhou L; Warren S; May PJ
    Front Neuroanat; 2017; 11():36. PubMed ID: 28487639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the role of the paramedian pontine reticular formation in the control of head-restrained and head-unrestrained gaze shifts.
    Sparks DL; Barton EJ; Gandhi NJ; Nelson J
    Ann N Y Acad Sci; 2002 Apr; 956():85-98. PubMed ID: 11960796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocular counterroll modulates the preferred direction of saccade-related pontine burst neurons in the monkey.
    Scherberger H; Cabungcal JH; Hepp K; Suzuki Y; Straumann D; Henn V
    J Neurophysiol; 2001 Aug; 86(2):935-49. PubMed ID: 11495962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that the superior colliculus participates in the feedback control of saccadic eye movements.
    Soetedjo R; Kaneko CR; Fuchs AF
    J Neurophysiol; 2002 Feb; 87(2):679-95. PubMed ID: 11826037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.