These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 16292734)
41. [Advance in study of artificial nerve]. Zhu QT; Zhu JK; Cheng G Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2000 Nov; 14(6):369-71. PubMed ID: 12516443 [TBL] [Abstract][Full Text] [Related]
42. The use of undifferentiated bone marrow stromal cells for sciatic nerve regeneration in rats. Mohammadi R; Azizi S; Delirezh N; Hobbenaghi R; Amini K; Malekkhetabi P Int J Oral Maxillofac Surg; 2012 May; 41(5):650-6. PubMed ID: 22154576 [TBL] [Abstract][Full Text] [Related]
43. Creating bioabsorbable Schwann cell coated conduits through tissue engineering. Koshimune M; Takamatsu K; Nakatsuka H; Inui K; Yamano Y; Ikada Y Biomed Mater Eng; 2003; 13(3):223-9. PubMed ID: 12883171 [TBL] [Abstract][Full Text] [Related]
44. The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI. Tremp M; Meyer Zu Schwabedissen M; Kappos EA; Engels PE; Fischmann A; Scherberich A; Schaefer DJ; Kalbermatten DF Cell Transplant; 2015; 24(2):203-11. PubMed ID: 24380629 [TBL] [Abstract][Full Text] [Related]
45. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Hu J; Zhu QT; Liu XL; Xu YB; Zhu JK Exp Neurol; 2007 Apr; 204(2):658-66. PubMed ID: 17316613 [TBL] [Abstract][Full Text] [Related]
46. Peripheral Nerve Repair: Multimodal Comparison of the Long-Term Regenerative Potential of Adipose Tissue-Derived Cells in a Biodegradable Conduit. Kappos EA; Engels PE; Tremp M; Meyer zu Schwabedissen M; di Summa P; Fischmann A; von Felten S; Scherberich A; Schaefer DJ; Kalbermatten DF Stem Cells Dev; 2015 Sep; 24(18):2127-41. PubMed ID: 26134465 [TBL] [Abstract][Full Text] [Related]
47. Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. Shimizu S; Kitada M; Ishikawa H; Itokazu Y; Wakao S; Dezawa M Biochem Biophys Res Commun; 2007 Aug; 359(4):915-20. PubMed ID: 17573041 [TBL] [Abstract][Full Text] [Related]
48. Study of in vivo differentiation of rat bone marrow stromal cells into schwann cell-like cells. Chen X; Wang XD; Chen G; Lin WW; Yao J; Gu XS Microsurgery; 2006; 26(2):111-5. PubMed ID: 16453290 [TBL] [Abstract][Full Text] [Related]
49. Transplantation of preconditioned Schwann cells following hemisection spinal cord injury. Dinh P; Bhatia N; Rasouli A; Suryadevara S; Cahill K; Gupta R Spine (Phila Pa 1976); 2007 Apr; 32(9):943-9. PubMed ID: 17450067 [TBL] [Abstract][Full Text] [Related]
50. Collagen (NeuraGen®) nerve conduits and stem cells for peripheral nerve gap repair. di Summa PG; Kingham PJ; Campisi CC; Raffoul W; Kalbermatten DF Neurosci Lett; 2014 Jun; 572():26-31. PubMed ID: 24792394 [TBL] [Abstract][Full Text] [Related]
51. Behavioral evaluation of regenerated rat sciatic nerve by a nanofibrous PHBV conduit filled with Schwann cells as artificial nerve graft. Biazar E; Heidari Keshel S; Pouya M Cell Commun Adhes; 2013 Oct; 20(5):93-103. PubMed ID: 24041294 [TBL] [Abstract][Full Text] [Related]
53. Regeneration patterns influence hindlimb automutilation after sciatic nerve repair using stem cells in rats. Haselbach D; Raffoul W; Larcher L; Tremp M; Kalbermatten DF; di Summa PG Neurosci Lett; 2016 Nov; 634():153-159. PubMed ID: 27760382 [TBL] [Abstract][Full Text] [Related]
54. Genetically modified canine Schwann cells--In vitro and in vivo evaluation of their suitability for peripheral nerve tissue engineering. Schmitte R; Tipold A; Stein VM; Schenk H; Flieshardt C; Grothe C; Haastert K J Neurosci Methods; 2010 Feb; 186(2):202-8. PubMed ID: 19962404 [TBL] [Abstract][Full Text] [Related]
55. Evaluation of the chitosan/glycerol-beta-phosphate disodium salt hydrogel application in peripheral nerve regeneration. Zheng L; Ao Q; Han H; Zhang X; Gong Y Biomed Mater; 2010 Jun; 5(3):35003. PubMed ID: 20404399 [TBL] [Abstract][Full Text] [Related]
56. Improvement of peripheral nerve regeneration by a tissue-engineered nerve filled with ectomesenchymal stem cells. Nie X; Zhang YJ; Tian WD; Jiang M; Dong R; Chen JW; Jin Y Int J Oral Maxillofac Surg; 2007 Jan; 36(1):32-8. PubMed ID: 17169530 [TBL] [Abstract][Full Text] [Related]
57. Repairing large radial nerve defects by acellular nerve allografts seeded with autologous bone marrow stromal cells in a monkey model. Wang D; Liu XL; Zhu JK; Hu J; Jiang L; Zhang Y; Yang LM; Wang HG; Zhu QT; Yi JH; Xi TF J Neurotrauma; 2010 Oct; 27(10):1935-43. PubMed ID: 20701436 [TBL] [Abstract][Full Text] [Related]
58. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect. Luo L; Gan L; Liu Y; Tian W; Tong Z; Wang X; Huselstein C; Chen Y Biochem Biophys Res Commun; 2015 Feb; 457(4):507-13. PubMed ID: 25580010 [TBL] [Abstract][Full Text] [Related]
59. Biphasic electrical targeting plays a significant role in schwann cell activation. Kim IS; Song YM; Cho TH; Pan H; Lee TH; Kim SJ; Hwang SJ Tissue Eng Part A; 2011 May; 17(9-10):1327-40. PubMed ID: 21235401 [TBL] [Abstract][Full Text] [Related]
60. Isogenic venous graft supported with bone marrow stromal cells as a natural conduit for bridging a 20 mm nerve gap. Nijhuis TH; Brzezicki G; Klimczak A; Siemionow M Microsurgery; 2010 Nov; 30(8):639-45. PubMed ID: 20842703 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]