BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16292921)

  • 1. The role of molecular interactions and interfaces in diffusion: transport diffusivity and evaluation of the Darken approximation.
    Snyder MA; Vlachos DG
    J Chem Phys; 2005 Nov; 123(18):184707. PubMed ID: 16292921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of molecular interactions and interfaces in diffusion: permeation through single-crystal and polycrystalline microporous membranes.
    Snyder MA; Vlachos DG
    J Chem Phys; 2005 Nov; 123(18):184708. PubMed ID: 16292922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular sieve valves driven by adsorbate-adsorbate interactions: hysteresis in permeation of microporous membranes.
    Snyder MA; Vlachos DG
    J Chem Phys; 2005 May; 122(20):204706. PubMed ID: 15945763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoscopic simulations of the diffusivity of ethane in beds of NaX zeolite crystals: comparison with pulsed field gradient NMR measurements.
    Papadopoulos GK; Theodorou DN; Vasenkov S; Kärger J
    J Chem Phys; 2007 Mar; 126(9):094702. PubMed ID: 17362113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined atomistic simulation and quasielastic neutron scattering study of the low-temperature dynamics of hydrogen and deuterium confined in NaX zeolite.
    Pantatosaki E; Papadopoulos GK; Jobic H; Theodorou DN
    J Phys Chem B; 2008 Sep; 112(37):11708-15. PubMed ID: 18712915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas diffusion in polycrystalline silicalite membranes investigated by 1H pulse field-gradient NMR.
    Takaba H; Yamamoto A; Hayamizu K; Nakao S
    J Phys Chem B; 2005 Jul; 109(29):13871-6. PubMed ID: 16852740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boundary effects of molecular diffusion in nanoporous materials: a pulsed field gradient nuclear magnetic resonance study.
    Geier O; Snurr RQ; Stallmach F; Kärger J
    J Chem Phys; 2004 Jan; 120(1):367-73. PubMed ID: 15267297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of mass transfer resistance in grain boundaries of twinned zeolite membranes.
    Newsome DA; Sholl DS
    J Phys Chem B; 2006 Nov; 110(45):22681-9. PubMed ID: 17092016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic Monte Carlo simulations of surface growth during plasma deposition of silicon thin films.
    Pandey SC; Singh T; Maroudas D
    J Chem Phys; 2009 Jul; 131(3):034503. PubMed ID: 19624205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of pore blockage in silicalite zeolite using free energy perturbation calculations.
    Gupta A; Snurr RQ
    J Phys Chem B; 2005 Feb; 109(5):1822-33. PubMed ID: 16851164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the pairwise additive potential approximation using DFT: coadsorption of CO and N on Rh (100).
    Curulla Ferré D; van Bavel AP; Niemantsverdriet JW
    Chemphyschem; 2005 Mar; 6(3):473-80. PubMed ID: 15799472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion in confinement: kinetic simulations of self- and collective diffusion behavior of adsorbed gases.
    Abouelnasr MK; Smit B
    Phys Chem Chem Phys; 2012 Sep; 14(33):11600-9. PubMed ID: 22678457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence study of arene probe microenvironment in the intraparticle void volume of zeolites interfaced with bathing polar solvents.
    Ellison EH; Moodley D; Hime J
    J Phys Chem B; 2006 Mar; 110(10):4772-81. PubMed ID: 16526714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules.
    Chatterjee A; Vlachos DG; Katsoulakis MA
    J Chem Phys; 2004 Dec; 121(22):11420-31. PubMed ID: 15634102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic Monte Carlo modeling of chemical reactions coupled with heat transfer.
    Castonguay TC; Wang F
    J Chem Phys; 2008 Mar; 128(12):124706. PubMed ID: 18376959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of kinetic Monte Carlo and molecular dynamics simulations of diffusion in a model glass former.
    Middleton TF; Wales DJ
    J Chem Phys; 2004 May; 120(17):8134-43. PubMed ID: 15267733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of the cation motion upon adsorption of CO2 in Faujasite zeolite systems.
    Plant DF; Maurin G; Jobic H; Llewellyn PL
    J Phys Chem B; 2006 Jul; 110(29):14372-8. PubMed ID: 16854144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the concentration dependence of the methanol self-diffusivity in faujasite systems: comparison with the liquid phase.
    Plant DF; Maurin G; Bell RG
    J Phys Chem B; 2006 Aug; 110(32):15926-31. PubMed ID: 16898746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon dioxide and methane transport in DDR zeolite: insights from molecular simulations into carbon dioxide separations in small pore zeolites.
    Jee SE; Sholl DS
    J Am Chem Soc; 2009 Jun; 131(22):7896-904. PubMed ID: 19422215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates.
    Nagasaka M; Kondoh H; Nakai I; Ohta T
    J Chem Phys; 2007 Jan; 126(4):044704. PubMed ID: 17286496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.