These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16292933)

  • 1. Calculation of the circular dichroism spectra of carbon monoxy- and deoxy myoglobin: interpretation of a time-resolved circular dichroism experiment.
    Dartigalongue T; Hache F
    J Chem Phys; 2005 Nov; 123(18):184901. PubMed ID: 16292933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved circular dichroism in carbonmonoxy-myoglobin: the central role of the proximal histidine.
    Dartigalongue T; Hache F
    Chirality; 2006 May; 18(4):273-8. PubMed ID: 16534800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subpicosecond UV spectroscopy of carbonmonoxy-myoglobin: absorption and circular dichroism studies.
    Dartigalongue T; Niezborala C; Hache F
    Phys Chem Chem Phys; 2007 Apr; 9(13):1611-5. PubMed ID: 17429554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a five-coordinate heme protein maquette: a spectroscopic model of deoxymyoglobin.
    Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR
    Inorg Chem; 2004 Dec; 43(26):8218-20. PubMed ID: 15606161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of K-edge circular dichroism of amino acids: comparison of random phase approximation with other methods.
    Kimberg V; Kosugi N
    J Chem Phys; 2007 Jun; 126(24):245101. PubMed ID: 17614589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explaining the visible and near-infrared circular dichroism spectra of light-harvesting 1 complexes from purple bacteria: a modeling study.
    Georgakopoulou S; van Grondelle R; van der Zwan G
    J Phys Chem B; 2006 Feb; 110(7):3344-53. PubMed ID: 16494349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picosecond structural dynamics of myoglobin following photodissociation of carbon monoxide as revealed by ultraviolet time-resolved resonance Raman spectroscopy.
    Sato A; Mizutani Y
    Biochemistry; 2005 Nov; 44(45):14709-14. PubMed ID: 16274218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of the anomalous circular dichroism spectra of many apomyoglobin mutants.
    Ribeiro EA; Ramos CH
    Anal Biochem; 2004 Jun; 329(2):300-6. PubMed ID: 15158491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic evidence for nanosecond protein relaxation after photodissociation of myoglobin-CO.
    Esquerra RM; Goldbeck RA; Kim-Shapiro DB; Kliger DS
    Biochemistry; 1998 Dec; 37(50):17527-36. PubMed ID: 9860868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein conformational relaxation following photodissociation of CO from carbonmonoxymyoglobin: picosecond circular dichroism and absorption studies.
    Xie XL; Simon JD
    Biochemistry; 1991 Apr; 30(15):3682-92. PubMed ID: 2015224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength shifts in solid-state circular dichroism spectra: a possible explanation.
    Castiglioni E; Abbate S; Longhi G; Gangemi R
    Chirality; 2007 Jun; 19(6):491-6. PubMed ID: 17437265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Calculation of spectra of absorption and circular dichroism of Rhodopseudomonas acidophila light harvesting complexes based on roentgen structural data].
    Pishchal'nikov RIu; Razzhivin AP
    Biofizika; 2003; 48(2):221-6. PubMed ID: 12723345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric band profile of the Soret band of deoxymyoglobin is caused by electronic and vibronic perturbations of the heme group rather than by a doming deformation.
    Schweitzer-Stenner R; Gorden JP; Hagarman A
    J Chem Phys; 2007 Oct; 127(13):135103. PubMed ID: 17919056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in circular dichroic and absorption spectra of myoglobin induced by carboxymethylation.
    Batra PP; Moriyama Y; Takeda K
    Biochem Int; 1989 Feb; 18(2):319-24. PubMed ID: 2764952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-terminal labeling of proteins by the Pictet-Spengler reaction.
    Sasaki T; Kodama K; Suzuki H; Fukuzawa S; Tachibana K
    Bioorg Med Chem Lett; 2008 Aug; 18(16):4550-3. PubMed ID: 18667304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Determination of protein secondary structure from circular dichroism spectra. III. Protein-derived base spectra of circular dichroism for antiparallel and parallel beta-structures].
    Bolotina IA; Chekhov VO; Lugauskas VIu; Ptitsyn OB
    Mol Biol (Mosk); 1981; 15(1):167-75. PubMed ID: 6278289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circular dichroism and absorption spectroscopy of merocyanine dimer aggregates: molecular properties and exciton transfer dynamics from time-dependent quantum calculations.
    Seibt J; Lohr A; Würthner F; Engel V
    Phys Chem Chem Phys; 2007 Dec; 9(47):6214-8. PubMed ID: 18046470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study of the complex of myoglobin with nicotinic acid by the method magnetic circular dichroism. Nature of the double hemochromogen].
    Arutiunian AM; Magonov SN; Sharonov IuA
    Mol Biol (Mosk); 1979; 13(2):438-42. PubMed ID: 440310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circular dichroism user facility at the National Synchrotron Light Source: estimation of protein secondary structure.
    Sutherland JC; Emrick A; France LL; Monteleone DC; Trunk J
    Biotechniques; 1992 Oct; 13(4):588-90. PubMed ID: 1476728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new, model-free calculation method to determine the coordination modes and distribution of copper(II) among the metal binding sites of multihistidine peptides using circular dichroism spectroscopy.
    Osz K
    J Inorg Biochem; 2008 Dec; 102(12):2184-95. PubMed ID: 18973951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.