BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 16292946)

  • 1. Integrated photothermal flow cytometry in vivo.
    Zharov VP; Galanzha EI; Tuchin VV
    J Biomed Opt; 2005; 10(5):051502. PubMed ID: 16292946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photothermal flow cytometry in vitro for detection and imaging of individual moving cells.
    Zharov VP; Galanzha EI; Tuchin VV
    Cytometry A; 2007 Apr; 71(4):191-206. PubMed ID: 17323354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermal image flow cytometry in vivo.
    Zharov VP; Galanzha EI; Tuchin VV
    Opt Lett; 2005 Mar; 30(6):628-30. PubMed ID: 15791998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo integrated flow image cytometry and lymph/blood vessels dynamic microscopy.
    Galanzha EI; Tuchin VV; Zharov VP
    J Biomed Opt; 2005; 10(5):054018. PubMed ID: 16292978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo photothermal flow cytometry: imaging and detection of individual cells in blood and lymph flow.
    Zharov VP; Galanzha EI; Tuchin VV
    J Cell Biochem; 2006 Apr; 97(5):916-32. PubMed ID: 16408292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents.
    Zharov VP; Galanzha EI; Shashkov EV; Khlebtsov NG; Tuchin VV
    Opt Lett; 2006 Dec; 31(24):3623-5. PubMed ID: 17130924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfabricated platform for studying stem cell fates.
    Chin VI; Taupin P; Sanga S; Scheel J; Gage FH; Bhatia SN
    Biotechnol Bioeng; 2004 Nov; 88(3):399-415. PubMed ID: 15486946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral evaluation of laser-induced cell damage with photothermal microscopy.
    Lapotko DO; Zharov VP
    Lasers Surg Med; 2005 Jan; 36(1):22-30. PubMed ID: 15662629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel measurements of drug actions on Erythrocytes by dielectrophoresis, using a three-dimensional electrode design.
    Hübner Y; Hoettges KF; Kass GE; Ogin SL; Hughes MP
    IEE Proc Nanobiotechnol; 2005 Aug; 152(4):150-4. PubMed ID: 16441172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of laser trapping for continuous and selective monitoring of photothermal response of a single microparticle.
    Vasudevan S; Chen GC; Ahluwalia BS
    Opt Lett; 2008 Dec; 33(23):2779-81. PubMed ID: 19037424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening.
    Galanzha EI; Tuchin VV; Zharov VP
    World J Gastroenterol; 2007 Jan; 13(2):192-218. PubMed ID: 17226898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence monitoring of microchip capillary electrophoresis separation with monolithically integrated waveguides.
    Dongre C; Dekker R; Hoekstra HJ; Pollnau M; Martinez-Vazquez R; Osellame R; Cerullo G; Ramponi R; van Weeghel R; Besselink GA; van den Vlekkert HH
    Opt Lett; 2008 Nov; 33(21):2503-5. PubMed ID: 18978901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft trapping and manipulation of cells using a disposable nanoliter biochamber.
    Diop M; Taylor R
    Biophys J; 2006 May; 90(10):3813-22. PubMed ID: 16500970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip.
    Boer G; Johann R; Rohner J; Merenda F; Delacrétaz G; Renaud P; Salathé RP
    Rev Sci Instrum; 2007 Nov; 78(11):116101. PubMed ID: 18052509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping.
    Applegate RW; Squier J; Vestad T; Oakey J; Marr DW; Bado P; Dugan MA; Said AA
    Lab Chip; 2006 Mar; 6(3):422-6. PubMed ID: 16511626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser.
    Nedosekin DA; Sarimollaoglu M; Shashkov EV; Galanzha EI; Zharov VP
    Opt Express; 2010 Apr; 18(8):8605-20. PubMed ID: 20588705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices.
    Yamada M; Kasim V; Nakashima M; Edahiro J; Seki M
    Biotechnol Bioeng; 2004 Nov; 88(4):489-94. PubMed ID: 15459911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel.
    Arai F; Ng C; Maruyama H; Ichikawa A; El-Shimy H; Fukuda T
    Lab Chip; 2005 Dec; 5(12):1399-403. PubMed ID: 16286972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated multimodal microscopy, time-resolved fluorescence, and optical-trap rheometry: toward single molecule mechanobiology.
    Gullapalli RR; Tabouillot T; Mathura R; Dangaria JH; Butler PJ
    J Biomed Opt; 2007; 12(1):014012. PubMed ID: 17343487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a side-view particle imaging velocimetry flow system for cell-substrate adhesion studies.
    Leyton-Mange J; Yang S; Hoskins MH; Kunz RF; Zahn JD; Dong C
    J Biomech Eng; 2006 Apr; 128(2):271-8. PubMed ID: 16524340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.