These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 16292948)
1. Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure. Brooksby B; Jiang S; Dehghani H; Pogue BW; Paulsen KD; Weaver J; Kogel C; Poplack SP J Biomed Opt; 2005; 10(5):051504. PubMed ID: 16292948 [TBL] [Abstract][Full Text] [Related]
2. Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies. Xu H; Springett R; Dehghani H; Pogue BW; Paulsen KD; Dunn JF Appl Opt; 2005 Apr; 44(11):2177-88. PubMed ID: 15835363 [TBL] [Abstract][Full Text] [Related]
3. Diffuse optical tomography with physiological and spatial a priori constraints. Intes X; Maloux C; Guven M; Yazici B; Chance B Phys Med Biol; 2004 Jun; 49(12):N155-63. PubMed ID: 15272687 [TBL] [Abstract][Full Text] [Related]
4. Image guided near-infrared spectroscopy of breast tissue in vivo using boundary element method. Srinivasan S; Carpenter CM; Ghadyani HR; Taka SJ; Kaufman PA; Diflorio-Alexander RM; Wells WA; Pogue BW; Paulsen KD J Biomed Opt; 2010; 15(6):061703. PubMed ID: 21198151 [TBL] [Abstract][Full Text] [Related]
5. Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography. Wang X; Pogue BW; Jiang S; Dehghani H; Song X; Srinivasan S; Brooksby BA; Paulsen KD; Kogel C; Poplack SP; Wells WA J Biomed Opt; 2006; 11(4):041106. PubMed ID: 16965134 [TBL] [Abstract][Full Text] [Related]
6. Effect of probe arrangement on reproducibility of images by near-infrared topography evaluated by a virtual head phantom. Kawaguchi H; Koyama T; Okada E Appl Opt; 2007 Apr; 46(10):1658-68. PubMed ID: 17356608 [TBL] [Abstract][Full Text] [Related]
8. Validation of an algorithm for the nonrigid registration of longitudinal breast MR images using realistic phantoms. Li X; Dawant BM; Welch EB; Chakravarthy AB; Xu L; Mayer I; Kelley M; Meszoely I; Means-Powell J; Gore JC; Yankeelov TE Med Phys; 2010 Jun; 37(6):2541-52. PubMed ID: 20632566 [TBL] [Abstract][Full Text] [Related]
9. Correlation between mammographic density and volumetric fibroglandular tissue estimated on breast MR images. Wei J; Chan HP; Helvie MA; Roubidoux MA; Sahiner B; Hadjiiski LM; Zhou C; Paquerault S; Chenevert T; Goodsitt MM Med Phys; 2004 Apr; 31(4):933-42. PubMed ID: 15125012 [TBL] [Abstract][Full Text] [Related]
10. Modality independent elastography (MIE): a new approach to elasticity imaging. Washington CW; Miga MI IEEE Trans Med Imaging; 2004 Sep; 23(9):1117-28. PubMed ID: 15377121 [TBL] [Abstract][Full Text] [Related]
11. Improved quantification of small objects in near-infrared diffuse optical tomography. Srinivasan S; Pogue BW; Dehghani H; Jiang S; Song X; Paulsen KD J Biomed Opt; 2004; 9(6):1161-71. PubMed ID: 15568936 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique. Shea JD; Kosmas P; Hagness SC; Van Veen BD Med Phys; 2010 Aug; 37(8):4210-26. PubMed ID: 20879582 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the artifacts caused by metallic implants in breast MRI using dual-echo dixon versus conventional fat-suppression techniques. Le Y; Kipfer HD; Majidi SS; Holz S; Lin C AJR Am J Roentgenol; 2014 Sep; 203(3):W307-14. PubMed ID: 25148189 [TBL] [Abstract][Full Text] [Related]
14. Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography. Brooksby B; Pogue BW; Jiang S; Dehghani H; Srinivasan S; Kogel C; Tosteson TD; Weaver J; Poplack SP; Paulsen KD Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8828-33. PubMed ID: 16731633 [TBL] [Abstract][Full Text] [Related]
15. Improved parallel MR imaging using a coefficient penalized regularization for GRAPPA reconstruction. Liu W; Tang X; Ma Y; Gao JH Magn Reson Med; 2013 Apr; 69(4):1109-14. PubMed ID: 22628055 [TBL] [Abstract][Full Text] [Related]
16. Microwave dielectric contrast imaging in a magnetic resonant environment and the effect of using magnetic resonant spatial information in image reconstruction. Epstein NR; Golnabi AH; Meaney PM; Paulsen KD Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5738-41. PubMed ID: 22255643 [TBL] [Abstract][Full Text] [Related]
17. Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes. Pogue BW; Jiang S; Dehghani H; Kogel C; Soho S; Srinivasan S; Song X; Tosteson TD; Poplack SP; Paulsen KD J Biomed Opt; 2004; 9(3):541-52. PubMed ID: 15189092 [TBL] [Abstract][Full Text] [Related]
18. Mapping of the prostate in endorectal coil-based MRI/MRSI and CT: a deformable registration and validation study. Lian J; Xing L; Hunjan S; Dumoulin C; Levin J; Lo A; Watkins R; Rohling K; Giaquinto R; Kim D; Spielman D; Daniel B Med Phys; 2004 Nov; 31(11):3087-94. PubMed ID: 15587662 [TBL] [Abstract][Full Text] [Related]
19. Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo. Wang X; Pogue BW; Jiang S; Song X; Paulsen KD; Kogel C; Poplack SP; Wells WA J Biomed Opt; 2005; 10(5):051704. PubMed ID: 16292956 [TBL] [Abstract][Full Text] [Related]
20. Estimation of breast density: an adaptive moment preserving method for segmentation of fibroglandular tissue in breast magnetic resonance images. Wei CH; Li Y; Huang PJ; Gwo CY; Harms SE Eur J Radiol; 2012 Apr; 81(4):e618-24. PubMed ID: 22266417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]