These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16292960)

  • 21. Time-resolved measurements from speckle interferometry.
    Tualle JM; Nghiêm HL; Schäfauer C; Berthaud P; Tinet E; Ettori D; Avrillier S
    Opt Lett; 2005 Jan; 30(1):50-2. PubMed ID: 15648634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Static two-dimensional aperture coding for multimodal, multiplex spectroscopy.
    Gehm ME; McCain ST; Pitsianis NP; Brady DJ; Potuluri P; Sullivan ME
    Appl Opt; 2006 May; 45(13):2965-74. PubMed ID: 16639444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A 10-nm Spectral Resolution Hyperspectral LiDAR System Based on an Acousto-Optic Tunable Filter.
    Chen Y; Li W; Hyyppä J; Wang N; Jiang C; Meng F; Tang L; Puttonen E; Li C
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging systems.
    Katrašnik J; Pernuš F; Likar B
    Appl Opt; 2013 May; 52(15):3526-37. PubMed ID: 23736239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectrally programmable light engine for in vitro or in vivo molecular imaging and spectroscopy.
    MacKinnon N; Stange U; Lane P; MacAulay C; Quatrevalet M
    Appl Opt; 2005 Apr; 44(11):2033-40. PubMed ID: 15835352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pushbroom hyperspectral imaging system with selectable region of interest for medical imaging.
    Lim HT; Murukeshan VM
    J Biomed Opt; 2015 Apr; 20(4):046010. PubMed ID: 25900146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MWIR thermal imaging spectrometer based on the acousto-optic tunable filter.
    Zhao H; Ji Z; Jia G; Zhang Y; Li Y; Wang D
    Appl Opt; 2017 Sep; 56(25):7269-7276. PubMed ID: 29047991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination.
    Grulkowski I; Szulzycki K; Wojtkowski M
    Opt Express; 2014 Dec; 22(26):31746-60. PubMed ID: 25607144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Position of the prism in a dispersion-compensated acousto-optic deflector for multiphoton imaging.
    Bi K; Zeng S; Xue S; Sun J; Lv X; Li D; Luo Q
    Appl Opt; 2006 Nov; 45(33):8560-5. PubMed ID: 17086269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable acousto-optic spectral imager for atmospheric composition measurements in the visible spectral domain.
    Dekemper E; Loodts N; Van Opstal B; Maes J; Vanhellemont F; Mateshvili N; Franssens G; Pieroux D; Bingen C; Robert C; De Vos L; Aballea L; Fussen D
    Appl Opt; 2012 Sep; 51(25):6259-67. PubMed ID: 22945175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polarization-coupling all-fiber acousto-optic tunable filter insensitive to fiber bend and physical contact.
    Lee KJ; Hwang IK; Park HC; Kim BY
    Opt Express; 2009 Apr; 17(8):6096-100. PubMed ID: 19365432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orientation-independent differential interference contrast microscopy and its combination with an orientation-independent polarization system.
    Shribak M; LaFountain J; Biggs D; Inouè S
    J Biomed Opt; 2008; 13(1):014011. PubMed ID: 18315369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultraviolet-visible imaging acousto-optic tunable filters in KDP.
    Voloshinov V; Gupta N
    Appl Opt; 2004 Jul; 43(19):3901-9. PubMed ID: 15250556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dispersion compensation in high-speed optical coherence tomography by acousto-optic modulation.
    Xie T; Wang Z; Pan Y
    Appl Opt; 2005 Jul; 44(20):4272-80. PubMed ID: 16045215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polarization anisotropy in fiber-optic second harmonic generation microscopy.
    Fu L; Gu M
    Opt Express; 2008 Mar; 16(7):5000-6. PubMed ID: 18542600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyperspectral confocal microscope.
    Sinclair MB; Haaland DM; Timlin JA; Jones HD
    Appl Opt; 2006 Aug; 45(24):6283-91. PubMed ID: 16892134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a spectrograph based hyperspectral imaging system.
    Kosec M; Bürmen M; Tomaževič D; Pernuš F; Likar B
    Opt Express; 2013 May; 21(10):12085-99. PubMed ID: 23736429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery.
    Zuzak KJ; Naik SC; Alexandrakis G; Hawkins D; Behbehani K; Livingston EH
    Anal Chem; 2007 Jun; 79(12):4709-15. PubMed ID: 17492839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging through a scattering medium with an interferential spectrometer by selection of an amplitude modulation correlator.
    Ben Houcine K; Jacquot M; Verrier I; Brun G; Veillas C
    Opt Lett; 2004 Dec; 29(24):2908-10. PubMed ID: 15645820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quasi-collinear IR AOTF based on mercurous halide single crystals for spatio-spectral hyperspectral imaging.
    Krauz L; Páta P; Bednář J; Klíma M
    Opt Express; 2021 Apr; 29(9):12813-12832. PubMed ID: 33985030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.