BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 1629300)

  • 1. Determination of concentrations of adenosine and other purines in human term placenta by reversed-phase high-performance liquid chromatography with photodiode-array detection: evidence for pathways of purine metabolism in the placenta.
    Maguire MH; Szabo I; Slegel P; King CR
    J Chromatogr; 1992 Mar; 575(2):243-53. PubMed ID: 1629300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line recognition and quantitation of coeluting hypoxanthine and guanine in reversed-phase high-performance liquid chromatography of placental tissue extracts: photodiode-array detection and spectral analysis of coeluting peaks.
    Szabo I; Maguire MH
    Anal Biochem; 1993 Dec; 215(2):253-60. PubMed ID: 8122786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of adenosine, inosine and hypoxanthine in human term placenta by reversed-phase high-performance liquid chromatography.
    Maguire MH; Westermeyer FA; King CR
    J Chromatogr; 1986 Jul; 380(1):55-66. PubMed ID: 3755727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia.
    Hagberg H; Andersson P; Lacarewicz J; Jacobson I; Butcher S; Sandberg M
    J Neurochem; 1987 Jul; 49(1):227-31. PubMed ID: 3585332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purine re-utilization in normal and malignant cells of human placental origin.
    Vettenranta K; Raivio KO
    Placenta; 1984; 5(4):315-22. PubMed ID: 6504861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous measurement of adenosine and hypoxanthine in human umbilical cord plasma using reversed-phase high-performance liquid chromatography with photodiode-array detection and on-line validation of peak purity.
    Maguire MH; Szabó I; Valkó IE; Finley BE; Bennett TL
    J Chromatogr B Biomed Sci Appl; 1998 Apr; 707(1-2):33-41. PubMed ID: 9613931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of Adenine Nucleotide Concentrations in Cells and Tissues by High-Performance Liquid Chromatography.
    García-Tardón N; Guigas B
    Methods Mol Biol; 2018; 1732():229-237. PubMed ID: 29480479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of adenosine metabolites and metabolism in isolated tissue preparations.
    Webster DR; Boston GD; Paton DM
    J Pharmacol Methods; 1985 Jul; 13(4):339-50. PubMed ID: 4021500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of an RP-HPLC method for the estimation of adenosine and related purines in brain tissues of rats.
    Akula KK; Kaur M; Bishnoi M; Kulkarni SK
    J Sep Sci; 2008 Oct; 31(18):3139-47. PubMed ID: 18780378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hypothermic ischemia on purine catabolism in canine, primate, and human myocardium.
    Möllhoff T; Sukehiro S; Hendrickx M; Van Belle H; Flameng W
    Thorac Cardiovasc Surg; 1991 Aug; 39(4):187-92. PubMed ID: 1948966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-pressure liquid chromatographic-fluorometric detection of adenosine and adenine nucleotides: application to endogenous content and electrically induced release of adenyl purines in guinea pig vas deferens.
    Levitt B; Head RJ; Westfall DP
    Anal Biochem; 1984 Feb; 137(1):93-100. PubMed ID: 6731811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood purine and energy status in rats with colitis.
    Al-Awadi FM; Khan I
    Dig Dis Sci; 2001 Feb; 46(2):443-8. PubMed ID: 11281197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis.
    DeBoer LW; Ingwall JS; Kloner RA; Braunwald E
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5471-5. PubMed ID: 6933566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast determination of adenosine 5'-triphosphate (ATP) and its catabolites in royal jelly using ultraperformance liquid chromatography.
    Zhou L; Xue X; Zhou J; Li Y; Zhao J; Wu L
    J Agric Food Chem; 2012 Sep; 60(36):8994-9. PubMed ID: 22924531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid determination of creatine, phosphocreatine, purine bases and nucleotides (ATP, ADP, AMP, GTP, GDP) in heart biopsies by gradient ion-pair reversed-phase liquid chromatography.
    Ally A; Park G
    J Chromatogr; 1992 Mar; 575(1):19-27. PubMed ID: 1517298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isocratic separation of some purine nucleotide, nucleoside, and base metabolites from biological extracts by high-performance liquid chromatography.
    Anderson FS; Murphy RC
    J Chromatogr; 1976 Jun; 121(2):251-62. PubMed ID: 6484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of adenosine phosphates in mouse myocardium tissue by HPLC with UV detection and using porous graphite carbon column.
    Feng JH; Wei KZ; Gao JP; Xu X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 May; 1145():122110. PubMed ID: 32315974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of purine metabolism in human renal transplantation.
    Vigués F; Ambrosio S; Franco E; Bartrons R
    Transplantation; 1993 Apr; 55(4):733-6. PubMed ID: 8475544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified procedures for the separation and fluorometric determination of adenine nucleotides.
    Triplett RB; Smith LD
    Anal Biochem; 1977 Jun; 80(2):490-5. PubMed ID: 18947
    [No Abstract]   [Full Text] [Related]  

  • 20. Simultaneous determination of creatine compounds and adenine nucleotides in myocardial tissue by high-performance liquid chromatography.
    Teerlink T; Hennekes M; Bussemaker J; Groeneveld J
    Anal Biochem; 1993 Oct; 214(1):278-83. PubMed ID: 8250235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.