These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16293011)

  • 1. Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices.
    Bluestein D
    Expert Rev Med Devices; 2004 Sep; 1(1):65-80. PubMed ID: 16293011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative developments of the heart valves designed for use in ventricular assist devices.
    Goubergrits L; Affeld K; Kertzscher U
    Expert Rev Med Devices; 2005 Jan; 2(1):61-71. PubMed ID: 16293030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical heart valve cavitation.
    Johansen P
    Expert Rev Med Devices; 2004 Sep; 1(1):95-104. PubMed ID: 16293013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innovative technologies for the assessment of cardiovascular medical devices: state-of-the-art techniques for artificial heart valve testing.
    Grigioni M; Daniele C; D'Avenio G; Morbiducci U; Del Gaudio C; Abbate M; Di Meo D
    Expert Rev Med Devices; 2004 Sep; 1(1):81-93. PubMed ID: 16293012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 12 cc Penn State pulsatile pediatric ventricular assist device: fluid dynamics associated with valve selection.
    Cooper BT; Roszelle BN; Long TC; Deutsch S; Manning KB
    J Biomech Eng; 2008 Aug; 130(4):041019. PubMed ID: 18601461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow in prosthetic heart valves: state-of-the-art and future directions.
    Yoganathan AP; Chandran KB; Sotiropoulos F
    Ann Biomed Eng; 2005 Dec; 33(12):1689-94. PubMed ID: 16389514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid-structure interaction approach.
    Morbiducci U; Ponzini R; Nobili M; Massai D; Montevecchi FM; Bluestein D; Redaelli A
    J Biomech; 2009 Aug; 42(12):1952-60. PubMed ID: 19524927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards optimization of the thrombogenic potential of blood recirculating cardiovascular devices using modeling approaches.
    Bluestein D
    Expert Rev Med Devices; 2006 May; 3(3):267-70. PubMed ID: 16681446
    [No Abstract]   [Full Text] [Related]  

  • 9. Towards non-thrombogenic performance of blood recirculating devices.
    Bluestein D; Chandran KB; Manning KB
    Ann Biomed Eng; 2010 Mar; 38(3):1236-56. PubMed ID: 20131098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear-slip Mesh Update Method: implementation and applications.
    Behr M; Arora D
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):113-23. PubMed ID: 12745425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and simulation of blood flow in a sac-type left ventricular assist device.
    Najarian S; Firouzi F; Fatouraee N; Dargahi J
    Biomed Mater Eng; 2007; 17(4):229-33. PubMed ID: 17611298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical dye washout method as a tool for characterizing the heart valve flow: study of three standard mechanical heart valves.
    Goubergrits L; Kertzscher U; Affeld K; Petz C; Stalling D; Hege HC
    ASAIO J; 2008; 54(1):50-7. PubMed ID: 18204316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low thromboembolic risk for patients with the Heartmate II left ventricular assist device.
    John R; Kamdar F; Liao K; Colvin-Adams M; Miller L; Joyce L; Boyle A
    J Thorac Cardiovasc Surg; 2008 Nov; 136(5):1318-23. PubMed ID: 19026822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tri-leaflet valve design with a purge flow for heart-assist devices: an in vitro optimization study.
    Timmel T; Seshadri S; Goubergrits L; Affeld K; Kertzscher U
    Artif Organs; 2012 Jan; 36(1):42-8. PubMed ID: 21955182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive blood damage analysis for ventricular assist devices.
    Hentschel B; Tedjo I; Probst M; Wolter M; Behr M; Bischof C; Kuhlen T
    IEEE Trans Vis Comput Graph; 2008; 14(6):1515-22. PubMed ID: 18989004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the fibrinolytic system in calves implanted with an artificial heart and ventricular assist device.
    al-Mondhiry H; Pae WE; Pierce WS
    ASAIO J; 1995; 41(1):95-9. PubMed ID: 7727829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complications in patients with ventricular assist devices.
    Barnes K
    Dimens Crit Care Nurs; 2008; 27(6):233-41; quiz 242-3. PubMed ID: 18953188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow-induced platelet activation in mechanical heart valves.
    Bluestein D; Yin W; Affeld K; Jesty J
    J Heart Valve Dis; 2004 May; 13(3):501-8. PubMed ID: 15222299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac extracorporeal life support: state of the art in 2007.
    Cooper DS; Jacobs JP; Moore L; Stock A; Gaynor JW; Chancy T; Parpard M; Griffin DA; Owens T; Checchia PA; Thiagarajan RR; Spray TL; Ravishankar C
    Cardiol Young; 2007 Sep; 17 Suppl 2():104-15. PubMed ID: 18039404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data.
    Morley D; Litwak K; Ferber P; Spence P; Dowling R; Meyns B; Griffith B; Burkhoff D
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):21-8. PubMed ID: 17198776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.