BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 16293100)

  • 1. Current and future developments in artificial muscles using electroactive polymers.
    Bar-Cohen Y
    Expert Rev Med Devices; 2005 Nov; 2(6):731-40. PubMed ID: 16293100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of artificial muscles based on electroactive ionomeric polymer-metal composites.
    Hirano LA; Escote MT; Martins-Filho LS; Mantovani GL; Scuracchio CH
    Artif Organs; 2011 May; 35(5):478-83. PubMed ID: 21595715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fullerenol-based electroactive artificial muscles utilizing biocompatible polyetherimide.
    Rajagopalan M; Oh IK
    ACS Nano; 2011 Mar; 5(3):2248-56. PubMed ID: 21332175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications?
    Carpi F; Kornbluh R; Sommer-Larsen P; Alici G
    Bioinspir Biomim; 2011 Dec; 6(4):045006. PubMed ID: 22126909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The application of conducting polymers to a biorobotic fin propulsor.
    Tangorra J; Anquetil P; Fofonoff T; Chen A; Del Zio M; Hunter I
    Bioinspir Biomim; 2007 Jun; 2(2):S6-17. PubMed ID: 17671330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural polysaccharides as electroactive polymers.
    Finkenstadt VL
    Appl Microbiol Biotechnol; 2005 Jun; 67(6):735-45. PubMed ID: 15724215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
    Qiu Y; Zhang E; Plamthottam R; Pei Q
    Acc Chem Res; 2019 Feb; 52(2):316-325. PubMed ID: 30698006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of a biomimetic device based on tri-layer polymer actuators--propulsion fins.
    Alici G; Spinks G; Huynh NN; Sarmadi L; Minato R
    Bioinspir Biomim; 2007 Jun; 2(2):S18-30. PubMed ID: 17671326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Work behaviors of artificial muscle based on cation driven polypyrrole.
    Fujisue H; Sendai T; Yamato K; Takashima W; Kaneto K
    Bioinspir Biomim; 2007 Jun; 2(2):S1-5. PubMed ID: 17671325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An artificial muscle actuator for biomimetic underwater propulsors.
    Yim W; Lee J; Kim KJ
    Bioinspir Biomim; 2007 Jun; 2(2):S31-41. PubMed ID: 17671327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired actuation of the eyeballs of an android robotic face: concept and preliminary investigations.
    Carpi F; De Rossi D
    Bioinspir Biomim; 2007 Jun; 2(2):S50-63. PubMed ID: 17671329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroactive polymeric sensors in hand prostheses: bending response of an ionic polymer metal composite.
    Biddiss E; Chau T
    Med Eng Phys; 2006 Jul; 28(6):568-78. PubMed ID: 16260170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable 'intelligent' materials in response to physical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 Apr; 19(4):493-507. PubMed ID: 19441928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic polymers in pharmaceutical and biomedical sciences.
    Drotleff S; Lungwitz U; Breunig M; Dennis A; Blunk T; Tessmar J; Göpferich A
    Eur J Pharm Biopharm; 2004 Sep; 58(2):385-407. PubMed ID: 15296963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds.
    Neuendorf RE; Saiz E; Tomsia AP; Ritchie RO
    Acta Biomater; 2008 Sep; 4(5):1288-96. PubMed ID: 18485842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotic applications in abdominal surgery: their limitations and future developments.
    Taylor GW; Jayne DG
    Int J Med Robot; 2007 Mar; 3():3-9. PubMed ID: 17441019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current trends in the development of synthetic materials for medical applications.
    Kohn J
    Med Device Technol; 1990; 1(6):34-8. PubMed ID: 10171150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable 'intelligent' materials in response to chemical stimuli for biomedical applications.
    Ju XJ; Xie R; Yang L; Chu LY
    Expert Opin Ther Pat; 2009 May; 19(5):683-96. PubMed ID: 19441941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecularly imprinted polymers in clinical diagnostics--future potential and existing problems.
    Piletsky SA; Turner NW; Laitenberger P
    Med Eng Phys; 2006 Dec; 28(10):971-7. PubMed ID: 16828327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.