These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 16293430)
1. Linear interaction energy models for beta-secretase (BACE) inhibitors: Role of van der Waals, electrostatic, and continuum-solvation terms. Tounge BA; Rajamani R; Baxter EW; Reitz AB; Reynolds CH J Mol Graph Model; 2006 May; 24(6):475-84. PubMed ID: 16293430 [TBL] [Abstract][Full Text] [Related]
2. Efficient evaluation of binding free energy using continuum electrostatics solvation. Huang D; Caflisch A J Med Chem; 2004 Nov; 47(23):5791-7. PubMed ID: 15509178 [TBL] [Abstract][Full Text] [Related]
3. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY; Chu ZT; Tao H; Warshel A Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821 [TBL] [Abstract][Full Text] [Related]
4. What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations? Wang W; Wang J; Kollman PA Proteins; 1999 Feb; 34(3):395-402. PubMed ID: 10024025 [TBL] [Abstract][Full Text] [Related]
5. Calculation of the binding affinity of beta-secretase inhibitors using the linear interaction energy method. Tounge BA; Reynolds CH J Med Chem; 2003 May; 46(11):2074-82. PubMed ID: 12747779 [TBL] [Abstract][Full Text] [Related]
6. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies. Genheden S; Ryde U Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991 [TBL] [Abstract][Full Text] [Related]
7. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. Naïm M; Bhat S; Rankin KN; Dennis S; Chowdhury SF; Siddiqi I; Drabik P; Sulea T; Bayly CI; Jakalian A; Purisima EO J Chem Inf Model; 2007; 47(1):122-33. PubMed ID: 17238257 [TBL] [Abstract][Full Text] [Related]
8. Prediction of ligand-receptor binding thermodynamics by free energy force field three-dimensional quantitative structure-activity relationship analysis: applications to a set of glucose analogue inhibitors of glycogen phosphorylase. Venkatarangan P; Hopfinger AJ J Med Chem; 1999 Jun; 42(12):2169-79. PubMed ID: 10377222 [TBL] [Abstract][Full Text] [Related]
9. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method. van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204 [TBL] [Abstract][Full Text] [Related]
10. Computing van der Waals energies in the context of the rotamer approximation. Grigoryan G; Ochoa A; Keating AE Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777 [TBL] [Abstract][Full Text] [Related]
11. Determination of the active site protonation state of beta-secretase from molecular dynamics simulation and docking experiment: implications for structure-based inhibitor design. Park H; Lee S J Am Chem Soc; 2003 Dec; 125(52):16416-22. PubMed ID: 14692784 [TBL] [Abstract][Full Text] [Related]
12. In silico discovery of beta-secretase inhibitors. Huang D; Lüthi U; Kolb P; Cecchini M; Barberis A; Caflisch A J Am Chem Soc; 2006 Apr; 128(16):5436-43. PubMed ID: 16620115 [TBL] [Abstract][Full Text] [Related]
13. Assessment of solvation effects on calculated binding affinity differences: trypsin inhibition by flavonoids as a model system for congeneric series. Checa A; Ortiz AR; de Pascual-Teresa B; Gago F J Med Chem; 1997 Dec; 40(25):4136-45. PubMed ID: 9406602 [TBL] [Abstract][Full Text] [Related]
14. Modeling the binding affinities of beta-secretase inhibitors: application to subsite specificity. Rajamani R; Reynolds CH Bioorg Med Chem Lett; 2004 Oct; 14(19):4843-6. PubMed ID: 15341936 [TBL] [Abstract][Full Text] [Related]
15. A method for induced-fit docking, scoring, and ranking of flexible ligands. Application to peptidic and pseudopeptidic beta-secretase (BACE 1) inhibitors. Moitessier N; Therrien E; Hanessian S J Med Chem; 2006 Oct; 49(20):5885-94. PubMed ID: 17004704 [TBL] [Abstract][Full Text] [Related]
16. Exhaustive docking of molecular fragments with electrostatic solvation. Majeux N; Scarsi M; Apostolakis J; Ehrhardt C; Caflisch A Proteins; 1999 Oct; 37(1):88-105. PubMed ID: 10451553 [TBL] [Abstract][Full Text] [Related]
17. PEARLS: program for energetic analysis of receptor-ligand system. Han LY; Lin HH; Li ZR; Zheng CJ; Cao ZW; Xie B; Chen YZ J Chem Inf Model; 2006; 46(1):445-50. PubMed ID: 16426079 [TBL] [Abstract][Full Text] [Related]
18. Superimposing the 27 crystal protein/inhibitor complexes of β-secretase to calculate the binding affinities by the linear interaction energy method. Liu S; Zhou LH; Wang HQ; Yao ZB Bioorg Med Chem Lett; 2010 Nov; 20(22):6533-7. PubMed ID: 20937559 [TBL] [Abstract][Full Text] [Related]
19. Calculating proton uptake/release and binding free energy taking into account ionization and conformation changes induced by protein-inhibitor association: application to plasmepsin, cathepsin D and endothiapepsin-pepstatin complexes. Alexov E Proteins; 2004 Aug; 56(3):572-84. PubMed ID: 15229889 [TBL] [Abstract][Full Text] [Related]
20. Continuum electrostatic model for the binding of cytochrome c2 to the photosynthetic reaction center from Rhodobacter sphaeroides. Miyashita O; Onuchic JN; Okamura MY Biochemistry; 2003 Oct; 42(40):11651-60. PubMed ID: 14529275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]