BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 16293681)

  • 1. Tubuloglomerular feedback-dependent modulation of renal myogenic autoregulation by nitric oxide.
    Shi Y; Wang X; Chon KH; Cupples WA
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R982-91. PubMed ID: 16293681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive modulation of renal myogenic autoregulation by nitric oxide and endothelin acting through ET-B receptors.
    Shi Y; Lau C; Cupples WA
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R354-61. PubMed ID: 16990488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the myogenic response in renal blood flow autoregulation by NO depends on endothelial nitric oxide synthase (eNOS), but not neuronal or inducible NOS.
    Dautzenberg M; Keilhoff G; Just A
    J Physiol; 2011 Oct; 589(Pt 19):4731-44. PubMed ID: 21825026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency modulation of renal myogenic autoregulation by perfusion pressure.
    Wang X; Loutzenhiser RD; Cupples WA
    Am J Physiol Regul Integr Comp Physiol; 2007 Sep; 293(3):R1199-204. PubMed ID: 17626123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide blunts myogenic autoregulation in rat renal but not skeletal muscle circulation via tubuloglomerular feedback.
    Just A; Arendshorst WJ
    J Physiol; 2005 Dec; 569(Pt 3):959-74. PubMed ID: 16223765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between nitric oxide and renal myogenic autoregulation in normotensive and hypertensive rats.
    Wang X; Cupples WA
    Can J Physiol Pharmacol; 2001 Mar; 79(3):238-45. PubMed ID: 11294600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brown Norway rats show impaired nNOS-mediated information transfer in renal autoregulation.
    Wang X; Cupples WA
    Can J Physiol Pharmacol; 2009 Jan; 87(1):29-36. PubMed ID: 19142213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of the myogenic mechanism: concordant effects of NO synthesis inhibition and O2- dismutation on renal autoregulation in the time and frequency domains.
    Moss NG; Gentle TK; Arendshorst WJ
    Am J Physiol Renal Physiol; 2016 May; 310(9):F832-45. PubMed ID: 26823282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide, atrial natriuretic factor, and dynamic renal autoregulation.
    Wang X; Salevsky FC; Cupples WA
    Can J Physiol Pharmacol; 1999 Oct; 77(10):777-86. PubMed ID: 10588482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitation of renal autoregulation by angiotensin II is mediated through modulation of nitric oxide.
    Guan Z; Willgoss DA; Matthias A; Manley SW; Crozier S; Gobe G; Endre ZH
    Acta Physiol Scand; 2003 Oct; 179(2):189-201. PubMed ID: 14510783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting physiological systems with laser speckle perfusion imaging of the renal cortex.
    Scully CG; Mitrou N; Braam B; Cupples WA; Chon KH
    Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(11):R929-39. PubMed ID: 23552498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal nitric oxide synthase inhibition sensitizes the tubuloglomerular feedback mechanism after volume expansion.
    Brown R; Ollerstam A; Persson AE
    Kidney Int; 2004 Apr; 65(4):1349-56. PubMed ID: 15086474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosine A2A receptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase.
    Carlström M; Wilcox CS; Welch WJ
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F457-64. PubMed ID: 21106859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The step response: a method to characterize mechanisms of renal blood flow autoregulation.
    Wronski T; Seeliger E; Persson PB; Forner C; Fichtner C; Scheller J; Flemming B
    Am J Physiol Renal Physiol; 2003 Oct; 285(4):F758-64. PubMed ID: 12851255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vessel- and vasoconstrictor-dependent role of rho/rho-kinase in renal microvascular tone.
    Nakamura A; Hayashi K; Ozawa Y; Fujiwara K; Okubo K; Kanda T; Wakino S; Saruta T
    J Vasc Res; 2003; 40(3):244-51. PubMed ID: 12902637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide modulates but does not impair myogenic vasoconstriction of the afferent arteriole in spontaneously hypertensive rats. Studies in the isolated perfused hydronephrotic kidney.
    Hayashi K; Suzuki H; Saruta T
    Hypertension; 1995 Jun; 25(6):1212-9. PubMed ID: 7768564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connexin 40 mediates the tubuloglomerular feedback contribution to renal blood flow autoregulation.
    Just A; Kurtz L; de Wit C; Wagner C; Kurtz A; Arendshorst WJ
    J Am Soc Nephrol; 2009 Jul; 20(7):1577-85. PubMed ID: 19443640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal nitric-oxide synthase inhibition facilitates adrenergic neurotransmission in rat mesenteric resistance arteries.
    Hatanaka Y; Hobara N; Honghua J; Akiyama S; Nawa H; Kobayashi Y; Takayama F; Gomita Y; Kawasaki H
    J Pharmacol Exp Ther; 2006 Feb; 316(2):490-7. PubMed ID: 16236814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser speckle contrast imaging reveals large-scale synchronization of cortical autoregulation dynamics influenced by nitric oxide.
    Mitrou N; Scully CG; Braam B; Chon KH; Cupples WA
    Am J Physiol Renal Physiol; 2015 Apr; 308(7):F661-70. PubMed ID: 25587114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of L-NAME on intra- and inter-nephron synchronization.
    Sosnovtseva OV; Pavlov AN; Pavlova ON; Mosekilde E; Holstein-Rathlou NH
    Eur J Pharm Sci; 2009 Jan; 36(1):39-50. PubMed ID: 19028576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.