These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 16293682)
41. Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Laposky A; Easton A; Dugovic C; Walisser J; Bradfield C; Turek F Sleep; 2005 Apr; 28(4):395-409. PubMed ID: 16171284 [TBL] [Abstract][Full Text] [Related]
42. Impaired wake-promoting mechanisms in ghrelin receptor-deficient mice. Esposito M; Pellinen J; Kapás L; Szentirmai É Eur J Neurosci; 2012 Jan; 35(2):233-43. PubMed ID: 22211783 [TBL] [Abstract][Full Text] [Related]
43. Contribution of melanin-concentrating hormone (MCH1) receptor to thermoregulation and sleep stabilization: evidence from MCH1 (-/-) mice. Ahnaou A; Dautzenberg FM; Huysmans H; Steckler T; Drinkenburg WH Behav Brain Res; 2011 Mar; 218(1):42-50. PubMed ID: 21074567 [TBL] [Abstract][Full Text] [Related]
44. Decreased 5-HT transporter mRNA in neurons of the dorsal raphe nucleus and behavioral depression in the obese leptin-deficient ob/ob mouse. Collin M; Håkansson-Ovesjö ML; Misane I; Ogren SO; Meister B Brain Res Mol Brain Res; 2000 Sep; 81(1-2):51-61. PubMed ID: 11000478 [TBL] [Abstract][Full Text] [Related]
45. Critical Dynamics and Coupling in Bursts of Cortical Rhythms Indicate Non-Homeostatic Mechanism for Sleep-Stage Transitions and Dual Role of VLPO Neurons in Both Sleep and Wake. Lombardi F; Gómez-Extremera M; Bernaola-Galván P; Vetrivelan R; Saper CB; Scammell TE; Ivanov PC J Neurosci; 2020 Jan; 40(1):171-190. PubMed ID: 31694962 [TBL] [Abstract][Full Text] [Related]
46. Leptin deficiency, not obesity, protects mice from Con A-induced hepatitis. Siegmund B; Lear-Kaul KC; Faggioni R; Fantuzzi G Eur J Immunol; 2002 Feb; 32(2):552-60. PubMed ID: 11828372 [TBL] [Abstract][Full Text] [Related]
47. Effects of social stimuli on sleep in mice: non-rapid-eye-movement (NREM) sleep is promoted by aggressive interaction but not by sexual interaction. Meerlo P; Turek FW Brain Res; 2001 Jul; 907(1-2):84-92. PubMed ID: 11430888 [TBL] [Abstract][Full Text] [Related]
48. Hypothalamic prepro-orexin mRNA level is inversely correlated to the non-rapid eye movement sleep level in high-fat diet-induced obese mice. Tanno S; Terao A; Okamatsu-Ogura Y; Kimura K Obes Res Clin Pract; 2013; 7(4):e251-7. PubMed ID: 24306152 [TBL] [Abstract][Full Text] [Related]
49. cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness. Langmesser S; Franken P; Feil S; Emmenegger Y; Albrecht U; Feil R PLoS One; 2009; 4(1):e4238. PubMed ID: 19156199 [TBL] [Abstract][Full Text] [Related]
50. Aging in mice reduces the ability to sustain sleep/wake states. Wimmer ME; Rising J; Galante RJ; Wyner A; Pack AI; Abel T PLoS One; 2013; 8(12):e81880. PubMed ID: 24358130 [TBL] [Abstract][Full Text] [Related]
51. Loss of circadian organization of sleep and wakefulness during hibernation. Larkin JE; Franken P; Heller HC Am J Physiol Regul Integr Comp Physiol; 2002 Apr; 282(4):R1086-95. PubMed ID: 11893613 [TBL] [Abstract][Full Text] [Related]
52. Persistence of sleep-temperature coupling after suprachiasmatic nuclei lesions in rats. Baker FC; Angara C; Szymusiak R; McGinty D Am J Physiol Regul Integr Comp Physiol; 2005 Sep; 289(3):R827-38. PubMed ID: 15860650 [TBL] [Abstract][Full Text] [Related]
53. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Dijk DJ; Duffy JF; Czeisler CA Chronobiol Int; 2000 May; 17(3):285-311. PubMed ID: 10841208 [TBL] [Abstract][Full Text] [Related]
54. Adrenergic signaling plays a critical role in the maintenance of waking and in the regulation of REM sleep. Ouyang M; Hellman K; Abel T; Thomas SA J Neurophysiol; 2004 Oct; 92(4):2071-82. PubMed ID: 15190089 [TBL] [Abstract][Full Text] [Related]
56. Genetic depletion of 5-HT increases central apnea frequency and duration and dampens arousal but does not impact the circadian modulation of these variables. Mateika JH; Komnenov D; Pop A; Kuhn DM J Appl Physiol (1985); 2019 Jan; 126(1):1-10. PubMed ID: 30335578 [TBL] [Abstract][Full Text] [Related]
57. Sleep and body temperature in TNFα knockout mice: The effects of sleep deprivation, β3-AR stimulation and exogenous TNFα. Szentirmai É; Kapás L Brain Behav Immun; 2019 Oct; 81():260-271. PubMed ID: 31220563 [TBL] [Abstract][Full Text] [Related]
58. Non-rapid-eye-movement sleep propensity after sleep deprivation in human subjects. Tagaya H; Uchiyama M; Shibui K; Kim K; Suzuki H; Kamei Y; Okawa M Neurosci Lett; 2002 Apr; 323(1):17-20. PubMed ID: 11911980 [TBL] [Abstract][Full Text] [Related]
59. Impaired steroidogenesis in the testis of leptin-deficient mice (ob/ob -/-). Martins FF; Aguila MB; Mandarim-de-Lacerda CA Acta Histochem; 2017 Jun; 119(5):508-515. PubMed ID: 28506466 [TBL] [Abstract][Full Text] [Related]
60. Hypersomnolence and reduced activity in pan-leptin receptor knockout mice. Wang Y; He J; Kastin AJ; Hsuchou H; Pan W J Mol Neurosci; 2013 Nov; 51(3):1038-45. PubMed ID: 23955775 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]