These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1216 related articles for article (PubMed ID: 16294266)
1. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. Zhang X; Xie C; Lin AS; Ito H; Awad H; Lieberman JR; Rubery PT; Schwarz EM; O'Keefe RJ; Guldberg RE J Bone Miner Res; 2005 Dec; 20(12):2124-37. PubMed ID: 16294266 [TBL] [Abstract][Full Text] [Related]
2. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Xie C; Reynolds D; Awad H; Rubery PT; Pelled G; Gazit D; Guldberg RE; Schwarz EM; O'Keefe RJ; Zhang X Tissue Eng; 2007 Mar; 13(3):435-45. PubMed ID: 17518596 [TBL] [Abstract][Full Text] [Related]
3. Effective bone engineering with periosteum-derived cells. Agata H; Asahina I; Yamazaki Y; Uchida M; Shinohara Y; Honda MJ; Kagami H; Ueda M J Dent Res; 2007 Jan; 86(1):79-83. PubMed ID: 17189468 [TBL] [Abstract][Full Text] [Related]
4. Effects of allogenous periosteal-derived cells transfected with adenovirus-mediated BMP-2 on repairing defects of the mandible in rabbits. Sun M; Tan W; Wang K; Dong Z; Peng H; Wei F J Oral Maxillofac Surg; 2013 Oct; 71(10):1789-99. PubMed ID: 23676775 [TBL] [Abstract][Full Text] [Related]
5. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. van Gastel N; Torrekens S; Roberts SJ; Moermans K; Schrooten J; Carmeliet P; Luttun A; Luyten FP; Carmeliet G Stem Cells; 2012 Nov; 30(11):2460-71. PubMed ID: 22911908 [TBL] [Abstract][Full Text] [Related]
6. Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing. Hoffman MD; Benoit DS Biomaterials; 2015 Jun; 52():426-40. PubMed ID: 25818449 [TBL] [Abstract][Full Text] [Related]
8. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Wang Q; Huang C; Xue M; Zhang X Bone; 2011 Mar; 48(3):524-32. PubMed ID: 21056707 [TBL] [Abstract][Full Text] [Related]
9. [Reconstruction of segmental bone defect by gene modified tissue engineering bone combined with vascularized periosteum]. Li JJ; Zhao Q; Wang H; Yang J; Yuan Q; Cui SQ; Li L Zhonghua Zheng Xing Wai Ke Za Zhi; 2007 Nov; 23(6):502-6. PubMed ID: 18269027 [TBL] [Abstract][Full Text] [Related]
10. Bone tissue engineering by way of allograft revitalization: mechanistic and mechanical investigations using a porcine model. Runyan CM; Ali ST; Chen W; Calder BW; Rumburg AE; Billmire DA; Taylor JA J Oral Maxillofac Surg; 2014 May; 72(5):1000.e1-11. PubMed ID: 24742484 [TBL] [Abstract][Full Text] [Related]
11. Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Tang Y; Tang W; Lin Y; Long J; Wang H; Liu L; Tian W Cell Biol Int; 2008 Sep; 32(9):1150-7. PubMed ID: 18638562 [TBL] [Abstract][Full Text] [Related]
12. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. Park J; Gelse K; Frank S; von der Mark K; Aigner T; Schneider H J Gene Med; 2006 Jan; 8(1):112-25. PubMed ID: 16142704 [TBL] [Abstract][Full Text] [Related]
13. The potential for vertical bone regeneration via maxillary periosteal elevation. Mouraret S; Von Kaeppler E; Bardet C; Hunter DJ; Chaussain C; Bouchard P; Helms JA J Clin Periodontol; 2014 Dec; 41(12):1170-7. PubMed ID: 25229322 [TBL] [Abstract][Full Text] [Related]
14. A perspective: engineering periosteum for structural bone graft healing. Zhang X; Awad HA; O'Keefe RJ; Guldberg RE; Schwarz EM Clin Orthop Relat Res; 2008 Aug; 466(8):1777-87. PubMed ID: 18509709 [TBL] [Abstract][Full Text] [Related]
15. Bone formation following transplantation of genetically modified primary bone marrow stromal cells. Sugiyama O; Orimo H; Suzuki S; Yamashita K; Ito H; Shimada T J Orthop Res; 2003 Jul; 21(4):630-7. PubMed ID: 12798062 [TBL] [Abstract][Full Text] [Related]
16. Adipose-derived stem cells combined with a demineralized cancellous bone substrate for bone regeneration. Shi Y; Niedzinski JR; Samaniego A; Bogdansky S; Atkinson BL Tissue Eng Part A; 2012 Jul; 18(13-14):1313-21. PubMed ID: 22500696 [TBL] [Abstract][Full Text] [Related]
17. Superior mineralization and neovascularization capacity of adult human metaphyseal periosteum-derived cells for skeletal tissue engineering applications. Chen D; Shen H; Shao J; Jiang Y; Lu J; He Y; Huang C Int J Mol Med; 2011 May; 27(5):707-13. PubMed ID: 21369695 [TBL] [Abstract][Full Text] [Related]
18. Regeneration of periosteum by human bone marrow stromal cell sheets. Syed-Picard FN; Shah GA; Costello BJ; Sfeir C J Oral Maxillofac Surg; 2014 Jun; 72(6):1078-83. PubMed ID: 24831936 [TBL] [Abstract][Full Text] [Related]
19. Recent advances in gene delivery for structural bone allografts. Awad HA; Zhang X; Reynolds DG; Guldberg RE; O'Keefe RJ; Schwarz EM Tissue Eng; 2007 Aug; 13(8):1973-85. PubMed ID: 17518728 [TBL] [Abstract][Full Text] [Related]
20. Synergetic effects of hBMSCs and hPCs in osteogenic differentiation and their capacity in the repair of critical-sized femoral condyle defects. Chen D; Shen H; He Y; Chen Y; Wang Q; Lu J; Jiang Y Mol Med Rep; 2015 Feb; 11(2):1111-9. PubMed ID: 25373389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]